Improving the Performance Per Area Factor of RISC-V Based Multi-Core Systems

Tobias Strauch
R&D, EDApix, Munich, Germany
tobias@edaptix.com

4th RISC-V Workshop at MIT, Boston, USA

July 13, 2016
Agenda

- C-Slow Retiming
- System Hyper Pipelining
 - Basic Idea
 - Performance Balancing
 - Deep Pipelining
 - Extended Pipelining
 - Performance per Area Factor
- microRISC Project
- miniRISC Project
- Miscellaneous
C-Slow Retiming
C-Slow Retiming
C-Slow Retiming

C=3
C-Slow Retiming

C=3
C-Slow Retiming

C=3

Diagram 1

Diagram 2
C-Slow Retiming

\[
C=3
\]
C-Slow Retiming

![Diagram of C-Slow Retiming]

\[C = 3 \]
C-Slow Retiming

C=3

Fetch → Decode → Execute

P=3

PM → RF → RF → RF
C-Slow Retiming

C=3

P=3, C=3

P=3
C-Slow Retiming
C-Slow Retiming

P=3, C=3

P=3
C-Slow Retiming
C-Slow Retiming

C=3

Fetch → Decode → Execute
P=3, C=3

Fetch → Decode → Execute
P=3
C-Slow Retiming

- Known since the 60’s, Barrel processors
- Leiserson [1]
- Berkeley summer class in 2001
- CSR on FPGAs (LUT level) by Weaver et al. [2]
- Millions of engineers
C-Slow Retiming (Personal Work)

- Diploma Thesis in 1998 on CSR of FSM
- LSI Logic (Milpitas, CA), RISC Processor, CSR on gate level
- 2001: Timing estimation on RTL, RTL code modification, ...
- 2010: Automatically apply CSR on RTL
- 2010: AVR Core (VHDL) on opencores.org
- 2010: OpenRISC Core (Verilog) on opencores.org
- Papers on CSR on RTL, CSR in safety critical designs, ...
System Hyper Pipelining

C=3, D=16

P=3, C=3, D=16

P=3, C=3

P=3
System Hyper Pipelining

C=3, D=16

P=3, C=3, D=16

C=3

P=3, C=3

P=3
System Hyper Pipelining

C=3, D=16

P=3, C=3, D=16

P=3, C=3

P=3
System Hyper Pipelining

C=3, D=16

C=3

P=3, C=3, D=16

P=3, C=3

P=3
System Hyper Pipelining
System Hyper Pipelining

C=3, D=16

P=3, C=3, D=16

C=3

P=3, C=3

P=3
System Hyper Pipelining

C=3, D=16

P=3, C=3, D=16

C=3

P=3, C=3

P=3
System Hyper Pipelining

C=3, D=16

P=3, C=3, D=16

C=3

P=3, C=3

P=3
System Hyper Pipelining

- Based on CSR
- Replaces original registers with memories (D).
- Adds thread stalling and therefore thread bypassing features.
- Cycle accurate performance balancing
- Late read / early write [3]
SHP, Performance Balancing

- Predictive runtime of specific threads
- Sync. start/execution, "Dynamic Length Instruction Words"
SHP, Deep Pipelining, T0 in “Beast Mode“

- Detect instruction dependency, LSB RISC-V ISA
- 1) Instruction LSB-sniffing
- 2) Enhanced PM read
- 3) Consider stall/flush signal
- No back-to-back, turned on/off on the fly
SHP, Extended Pipelining, “Frequency-Over-Scaling“

- Less registers per path than necessary
- Multi-cycle path for example in datapath section
- Re-execution of thread with valid multi-cycle path
SHP, Performance per Area Factor

Performance [%]
FPGA Slices [%]

T0, T1, T2, T3, T4
C=2, C=3, C=4, C=5

CHStone
SHP, System Level

- Performance (frequency) over area curve
- System level performance improvements !!!
- microRISC (Vscale), microcontroller, virtual peripherals, ...
- miniRISC (lowRISC, Rocket), SoC, OS, FPU, accelerators, ...
microRISC

- Vscale @80MHz async DDR3, SHP-ed @250MHz synchron
- Based on RV32IM subset (no FENCE and no SI, "RV32B")
- Individual threads handle interrupts (less stack activity).
- Main focus on virtual peripherals
- TC with event handler (complex timer)
microRISC

- UARTs
- PWMs
- ...

- Standard toolchain compatible (C++, ...)
- Demo: How to run timing critical software peripherals based on a highly dynamic SHP-ed core.
Diagram: Wei Song, lowRISC / University of Cambridge
Wei: "personal view"
- Minions part of Rocket core, heterogeneous multi-core
- SHP impact on performance per area and SoC architecture
- Arbiter/multiplexer: blocking
- Multilayer: complex
- SHP: time sliced usage at higher speed
Miscellaneous

- Simple programming model
- Fork-join operations, OpenMP
- Estimated ASIC numbers in paper [3]
- Altera Hyper Pipelining technology looks promising
- More on-FPGA memory (memory wall)
- Power consumption (work ongoing)
- Source code of projects in PDVL (VHDL, Verilog)
References

You made it !!!

- Thank you
- @arduissimo
- www.cloudx.cc
- tobias@cloudx.cc
- Call for cooperation: SHP-ed CPU in an ASIC technology