The RISC-V Vector ISA

Krste Asanovic, krste@berkeley.edu, Vector WG Chair
Roger Espasa, roger.espasa@esperanto.ai, Vector WG Co-Chair

Vector Extension Working Group

7th RISC-V Workshop, Nov'17

Why a Vector Extension?

Vector ISA Goodness RISC-V Vector Extension

e Reduced instruction bandwidth
e Reduced memory bandwidth

e Lower energy

e Exposes DLP

e Masked execution

e Gather/Scatter

e From small to large VPU

e Small

e Natural memory ordering
e Masks folded into vregs(*)
e Scalar, Vector & Matrix(*)
e Typed registers

e Reconfigurable

e Mixed-type instructions

e Common Vector/SIMD
programming model

e Fixed-point support
e Easily Extensible
e Best vector ISA ever ©

7th RISC-V Workshop, Nov'17

e Machine Learning
e Graphics

e DSP

e Crypto

e Structural analysis
e Climate modeling

e Weather prediction
e Drug design

e And more...

2
(*)Changed since last Workshop Presentation

The Vector ISA in a nutshell

» 32 vector registers (vO ... v31)
e Each register can hold either a scalar, a vector or a matrix (shape)

* Each vector register has an associated type (polymorphic encoding)
* Variable number of registers (dynamically changeable)

* Vector instruction semantics
e All instructions controlled by Vector Length (VL) register
* All instructions can be executed under mask
* Intuitive memory ordering model
* Precise exceptions supported

* \Vector instruction set:

e All instructions present in base line ISA are present in the vector ISA

* Vector memory instructions supporting linear, strided & gather/scatter access patterns
e Optional Fixed-Point set

e Optional Transcendental set

New Architectural State

MVL=8

~ 16b

<+—>

.32
»o BIEIAEIE vl (XLEN)
+1 I vxrm (3b)
v2 DI vxsat (1b)
v3 I

>vdcfg(512b)

+2s I
729 I
v30 I
v31 A I,

“hop NoviNote: Floating point flags use the existing scalar flags

Complete Vector Instruction List

VOP VMEM

vmadd vadd vmerge wvsll vclass vround vld vamoswap

vhmadd vaddi vmin vslli ~ vpopc vclip vst vamoadd

vmsub vand vmul vsra vsgnj vextract vlds vamoand

vamsub vandi vmulh vsrai vsgnjn vmv vsts vamoor
vdiv vsne vsrl vsgnjx vidx vamoxor
vseq Vvor vsrli vsqrt vstx vamomax
vsge VO vsub vcvt vamomin
vslt vrem VXOr

vmax Vvselect VXO] RIsCV Workshop, Nov'17 i

Adding two vector registers

vadd vl1, v2 =2 v0

(MVL=8, VL=5, F32)
for (1 = 0; 1 < vl; 1++) 7 6 5 4 3 2 1 0

vO[1] = v1[1] 455, V2[1]

for (1 = vl; 1 < MVL; 1++)

* When VL is zero, dest register is fully cleared
e Operations past ‘vl’ shall not raise exceptions
* Destination can be same as source

7th RISC-V Workshop, Nov'17 7

How is this executed? SIMD? Vector? Up to youl!

(hlglfleldlc|blal
nnnmnunn

bﬂbbﬁ

2-lane implementation

1% clock: a+i, b+
2" clock: c+k, d+l
3" clock: e+m, 0

4t clock: up to you 7th RISC-V Workshop, Nov'17

How is this executed? SIMD? Vector? Up to youl!

(hlelfleldlclblal
I R T

uasas

| 0| 0| 0 letm|d+l c+k[b+ila+i

4-lane implementation

2-lane implementation

15t clock: a+i, b+j

2" clock: c+k, d+|

31 clock: e+m, 0

4t clock: up to you
15t clock: a+i, b+j, c+k, d+l
2" clock: e+m, 0,0, 0

7th RISC-V Workshop, Nov'17 9

How is this executed? SIMD? Vector? Up to youl!

8-lane implementation (a.k.a. SIMD)

4-lane implementation

2-lane implementation

15t clock: a+i, b+j

2" clock: c+k, d+l st . . .
3dclock: e+m, 0 1 CIOCk' atl, b+ 1, C+k: d+|
4t clock: up to you 2nd clock: e+m 0' 0’ 0

Number of lanes is transparent to programmer

t . . .
Same code runs independent of # of lanes 1%t clock: a+i, b+j, c+k, d+l, e+tm, 90; 0,0

7th RISC-V Workshop, Nov'17

Adding a vector and a scalar

Scalar values in the Vector Register File

* The data inside a VREG can have 3 possible shapes:
* Asingle scalar value
e Avector (i.e., what you'd expect)
* A matrix (optional, not in the base spec)

* The current shape is held in the per-vreg type field
» Shape changes cause a VRF reset (discussed later)

* A vector register with shape scalar
* Only holds one value

* Implementation choice: where exactly this one value is stored within the
vector is not defined by the spec. Whether the value is replicated to every
lane is also implementation dependent.

vadd vl1, v2.s =2 vO0

(MVL=8, VL=5, F32)

| | | 7 6 5 4 3 2 1 0
for (1 = 0; 1 < vl; 1++)
32b 32b 32b 32b 32b 32b 32b 32b

{ 4+—— P4 —P4¢——P4¢—P<¢—P¢——P¢—P<¢—>

g h | e | fleldlclbla

vO[1] = vI1[1] +g;, v2[0] v2s
} q????

for (i = vl; 1 < MVL; i++) ?

{ MU O | O | O |e+i|d+i|cti]b+i]ati]
vOo[1] = O

}

* Implementations are free to replicate the scalar value across all elements in the vector register

* Assembly notation for indicating scalar operands still T.B.D

7th RISC-V Workshop, Nov'17 13

Masked execution

Masked execution

* Masks are stored in regular vector registers
* The LSB of each element is used as a boolean “0” or “1” value
e Other bits ignored

* Masks are computed with compare operations (vseq, vsne, vslt, vsge)
* veq V6, v7 2 vl
 Comparison results are integer “0” or “1” (can’t be assigned to float types)
* Encoded with as many bits as the destination register element size

* |[nstructions use 2 bits of encoding to select masked execution
* 00 : No masking (== assume masking is OxFFFF...FFFF)
01 :unused (used for other encodings)
* 10 : Use vl’s elements Isb as the mask
* 11 : Use ~v1’s elements Isb as the mask

vadd v3, v4, vl.t =2 v5

for (i = 0; 1 < vl; i++)

<

Ul
-
|

for (1 = vl;, 1 < MVL; 1i++)

* Remember: vl is the only register used as mask source
* Masked-out operations shall not raise any exceptions
* Assembly notation still TBD

7th RISC-V Workshop, Nov'17

lsb(vl[1]) ? v3[1] +g3, v4[1] : O;

(MVL=8, VL=5, F32)
7 6 5 4 3 2 1 0

Vector Load (unit stride)

v1ld 80 (x3)=2> v5

sz = sizeof type(v5); // 4
tmp = x3 + 80; // x3 = 20
for (1 = 0; 1 < vl; 1++)
{
v5[1] = read mem(tmp, sz);
tmp = tmp + sz
}
for (i = vl; 1 < MVL; 1i++)
{
vOo[1] = O

* Unaligned addresses are legal, likely very slow

\4 \4 \4 \4 \4
CHl 0 | 0 0 leldlc bla
7 6 5 4 3 2 1 0

18

Strided Vector Load

vlds 80 (x3,x9) =2 vb

sz = sizeof type(v)); // 4 @100 HEM
tmp = x3 + 80; // x3 = 20 @104 [
for (1 = 0; 1 < vl; i++) @108 [N
{ @112 [C

v5[1] = read mem(tmp, sz); @116 N

tmp = tmp + x9; // x9 = 8 = stride in bytes @120 [

@124 lEN

) @128 [
For (i = vl; i < MVL; i++) @132 [
{ @136 [

vO[i] = 0 @140
}
* Stride Ois legal & o lololhlelelcla

7 6 4 3 2 1 0

e Strides that result in unaligned accesses are legal
° ||ke|y very SlOW 7th RISC-V Workshop, Nov'17

20

Gather (indexed vector load)

vlidx 80 (x3,vZ2)

sz = sizeof type(v5); // 4
tmp = x3 + 80 // 100
for (1 = 0, 1 < vl; i++)
{

addr = tmp + sext(v2[i]);

v5[1] = read mem(addr, sz);

for (1 = vl; 1 < MVL; 1i++)

* Repeated addresses are legal

- v5

—@100E0
@104] T
—@108 G0
-@112 8

@116
@120

@124
@128
@132
@136 |
@140 B

* Unaligned addresses are legal;«likelywvery slow ﬂﬂl;]l;ll;ll’.lg

7 6

Vector Store (unit stride)

vst vbh =2 80 (x3)

sz = sizeof type(v5); // 4

tmp = x3 + 80; // x3 = 20
for (1 = 0; 1 < vl; i++)

{

A A A A

write mem(tmp, sz, v5[1i]);
tmp = tmp + sz,

CBl 0 | 0 0 le | d . clbla
7 6 5 4 3 2 1 0
* Unaligned addresses are legal, likely very slow

24

Strided Vector Store

vsts vbh =2 80 (x3,x9)

// X9 = stride in bytes

sz = sizeof type(vb); // 4

tmp = x3 + 80; // x3 = 20
for (1 = 0; 1 < vl; 1++)

{

.
4

write mem(tmp, sz, v5[1]

)
tmp = tmp + x9; // x9 = 8 = stride in bytes @124

 Stride O is legal

e Strides that result in unaligned accesses are legal
* likely very slow

7th RISC-V Workshop, Nov'17

@100 EM-
@104/
@108 -
@112
@116 -
@120/

@128/
@132 -
@136/ |
@140/ 0

)6l 0 | 010 hlglelcla
7 6 5 4 3 2 1 0

26

Scatter (indexed vector store)

vstx vbh =2 80 (x3,v2)

Yl o | o | 0| || o 3|5
|

|
sz = sizeof type(vD); // 4 ‘ ‘ ‘
tmp = x3 + 30; // 100 Bl 0 | 0 | 0 (d|d]a]i]c
for (1 = 0; 1 < vl; 1++)
{

addr = tmp + sext (v2[1]); - @100 ED-
write mem(addr, sz, v5[1]); @104 [

} - —— @108 -
- @112 EN-

@116 | =

* Repeated addresses are legal @120
* Provision for both ordered and unordered scatter @124 i

* Unaligned addresses are legal ggi 4

* likely very slow @136 | |
7th RISC-V Workshop, Nov'17
@140

28

Ordering

* From the point of view of a given HART
* Vector loads & stores instructions happen in order
* You don’t need any fences to see your own stores

* From the point of view of other HART's
* Other harts see the vector memory accesses as if done by a scalar loop
* So, they can be seen out-of-order by other harts

Typed Vector Registers

Typed Vector Registers

* Each vector register has an associated type
* Yes, different registers can have different types (i.e., v2 can have type F16 and v3 have type F32)
* Types can be mixed in an instruction under certain rules
e Hardware will automatically promote some types to others (see next slide)
* Types can be dynamically changed by the vcvt instruction
e |If the type change does not required more bits per element than in current configuration

e Rationale for typed registers
» Register types enable a “polymorphic” encoding for all vector instructions
» Saves large space of convert from “type A” to “type B”
* More scalable into the future: Supports custom types without additional encodings

e Supported types depend on the baseline ISA your implementation supports

* RV32| - 18, U8, 116, U16, 132, U32

* RV64l - 18, U8, 116, U16, 132, U32, 164, U64

* RV128| - 18, U8, 116, U16, 132, U32, 164, U64, X128, X128U
° F —>F16, F32

* FD - F16, F32, F64

* FDQ —> F16, F32, F64, F128

* Provision for custom type extensions

Type & data conversions: vevt

* To convert data into a different format
* Use vcvt between registers of the appropriate type
e vevt vilgs, 2 v0pq,
e vevt vl 2 vO0gs,

e vevt vlgs, 2 v0qs,

» Additional feature: changing the dest register type with vcvt

* vevt vilgs, 2 V0g3,, I32
* |Ignores the current dest type, and sets it to the type requested in immediate

* Legal if requested type size is not bigger than current configured element width

Mixing Types: promoting small into large

* When any source is smaller than dest, that source is “promoted” to dest size
* If allowed by promotion table. Otherwise, instruction shall trap

* Promotion examples
* vadd vl.,, v2,, 2 v0;,
* vadd ’ V2164 - VOI64
* vadd vl VZ2p3 2 V0,
» vmadd Vlii., V2ii., V3p3zs 2 V3pso

* Table on the right defines valid promotions
e Zero extend
* Sign extend
* Re-bias exponent and pad mantissa with 0’s

7th RISC-V Workshop, Nov'17

se = sign extend
ze = zero extend
p = pass through

rb = re-bias
t =trab
Source Type promotion
164 |132 |116 (I8 [U64 [U32 |Ul6 |U8 |F64 |F32 [F16
164 B se se se Bl t t t
132 t p PEEPE t t t t t
116 t t p = t t t t t
18 t t t p t t t t t t
ue4d t t t t p t t t
Dest
Type u32 t t t t t p t t t
ule t t t t t t p t t t
us t t t t t t t p| t t t
F64 t t t t t t t t p
F32 t t t t t t t t t
F16 t t t t t t t t t

Reconfigurable Vector Register File

Reconfigurable, variable-length Vector RF

* The vector unit is configured witha csrrw =1, vdcfg = x2

* x1 contains the new configuration indicating
* Number of logical registers (from 2 to 32)
* Type for each vector register, using an incremental scheme

* Hardware resets all vector state to zero

* Hardware computes Maximum Vector Length (MVL)
* based on x1 and available vector register file storage

e MVL returned in x2

* Can be done in user mode

* Expected to be fast

* The vector unit is unconfigured writing a O to vdcfg
* Very good to save kernel save & restore!
e Useful for low power state

* Implementation choices
* Always return the same MVL, regardless of config
» Split storage across logical registers, maybe losing some space
* Pack logical registers as tightly as possible

IMPORTANT: ALL vector registers ALWAYS have the same NUMBER OF ELEMENTS (MVL)

Users asks for 32 F32 registers

e Hardware has 32r x4e x 4B =512B

* Need

e 4 bytes per vO element
e 4 bytes per vl element

e 4 bytes per v31 element

 Therefore
« MVL=512B/(32*4)=4

* How is the VRF organized?
* Many possible ways

* Showing one possible organization

7th RISC-V Workshop, Nov'17

w
N
(on

32b

32b

32b

|
|
|
|

S <<<<<_|
00 W IiIN |- | O

<
N
o}

ii
\—E W | w
RO

00 W IiIN | =]|O

<
N
(o}

EE
H =[O

00 W IiIN | =] O

<
N
\o)

EE
H =[O

S <<<<<_|
00 W IiIN |- | O

<
N
o}

ii
\—E W | w
R [O

Users asks for only 2 F32 registers

32b

32b

32b

32b

|
|
|
|

e Hardware has 32r x4e x 4B =512B
* Need

e 4 bytes per vO element
* 4 bytes per vl element

* Therefore
e MVL=512B/ (4+4) = 64

* How is the VRF organized?

* Many possible ways
e Showing an INTERLEAVED organization

H R [O|F—, | O RO, | O

7th RISC-V Workshop, Nov'17

R | O, | O R | O, | O

R O, | O R (O, | O

R 1 O | O R 1 O | O

Users asks for only 2 F32 registers (also legall)

32b 32b 32b 32b
+—> +—> +—> +—>

e Hardware has 32r x4e x 4B =512B 1 [I
* Need

* 4 bytes per vO element
* 4 bytes per vl element

* Therefore
« MVL=512B/ (4+4) = 64
* And yet, implementation...

e ...answers with MVL =4
* Absolutely legal!

 How is the VRF organized?
* Many possible ways

* Showing one possible organizatio |
7th RISC-V Workshop, Nov'17

Users asks for 2 F16 regs & 2

Hardware has 32r x 4e x 4B =512B

Need

* 2 bytes per vO element
2 bytes per vl element
4 bytes per v2 element
4 bytes per v3 element
4 ‘unused bytes’ to nearest power of 2

Therefore
e MVL=512B/ (12B + 4B) = 32

How is the VRF organized?
* Many possible ways
* Showing one possible organization

7th RISC-V Workshop, Nov'17

< | <
N[N

< | <
w | w

<
w

Unused
Unused
Unused

Unused

[vow_|
[vow_|
[vow_|
[wv]
[v |
[v |
[v |
| v |
w2
w
w
I
N
Unused
Unused
Unused
Unused

-32 regs

< | <
NS

< | <
w | w

<
w

Unused
Unused
Unused

Unused

[vow_|
[vow_|
[vow_]
[wv]
[v]
[v]
[v |
| v |
v
N
w
N
N
Unused
Unused
Unused
Unused

< | <
NS

<
N

<

<

<

Unused
Unused
Unused

Unused

| wvo M vww
KN KX
KN KX
KN KX
K K
v v
v v
v v
I
B
B
B B
[v M w
| v M v
B
s v
| Unused [unused
| Unused i unused |
| Unused [unused
| Unused Jl unused

39

VO, VO
VO,V0
VO,V0
VO,V0
V1, V1
V1,V1
V1,V1

Vi, vi

< | <
N[N

<
N

<
w

<
w

<
w

Unused
Unused
Unused

Unused

MVL is transparent to software!

* Code can be portable across
e Different number of lanes
 Different values of MVL
* |f using setvl instruction

 SETVL rs1, rd
e vl=rs1>MVL? MVL:rsl
* Encoded as csrrw

loop:

7th RISC-V Workshop, Nov'17

H H H H H H

Vector-vector 32-bit add loop.

Assume vector unit configured with cor
a0 holds N

al holds pointer to result vector

a2 holds pointer to first source vecto
a3 holds pointer to second source vect
setvl t0O, a0l

vld vO, a2 # Load first vector
sl1 t1, tO0, 2 # multiply by bytes
add a2, ti1 # Bump pointer

vld v1, a3 # Load second vector
add a3, tl # Bump pointer

vadd vO, vi # Add elements

sub a0, tO # Decrement elements c
vst vO, al # Store result vector
add al, t1 # Bump pointer

bnez a0, loop # Any more? 40

Encoding Summary

src3 n sub src2 srci 3s|m|m dest OPCODE Example

vs3 00 vs2 vs1 1Im|m vd VOP vmadd

funcé i src2 srci 3s|m|m dest OPCODE Example

func6 0 vs2 vs1 Olm|m vd VOP vadd

funcé 0 0 vs1 O[m|m vd VOP vsqrt

funcé 0 | new dest type vs1 Olm|{m vd VOP vevt

funcé 0 rs2 rs1 Olm|{m vd VOP vmov.v.x vd[rs2] = rs1

func6 0 rs2 vs1 Olm|m xd VOP vmov.x.v xd = vs1[rs2]
func3 vs1 0|m|m vd VOP vaddi

imm op src2 src op[m|m dest OPCODE Example

imm 00 imm rs1 O|mfm vd VMEM vid

imm 010 imm rsi 1Imm vs1 VMEM vst

imm 011 rs2 rs1 Olm|m vd VMEM vlds

imm 011 rs2 rs1 1Im|m vs1 VMEM vsts

imm 110 vs2 rs1 O|mfm vd VMEM vidx

imm 110 vs2 rsi 1Imm vs1 VMEM vstx
func3 | a 111 vs2 rs1 1Im|m vd VMEM vamoadd

7th RISC-V Workshop, Nov'17

Not covered today — ask offline

* Exceptions
e Kernel save & restore

* Custom types
* Crypto WG has a good list of extended types that fit within 16b encoding
* GFX has additional types

e Matrix shapes (coming soon)
* Using the same vregs, don’t panic!
* Vadd “matrix”, “matrix” 2 “matrix”

1 o

* Vmul “matrix”, “matrix” 2 “matrix”

Status & Plans

e Best Vector ISA ever! ©

* Goal is to have spec ready to be ratified by next workshop
* Week of May 7t", 2018 in Barcelona

* Software
* Expect LLVM to support it
* Expect GCC auto-vectorizer to support it

* Please join the vector working group to participate
* Meeting every 2" Friday 8am PST
* Warning: Github spec is out-of-date: WIP to update to this presentation

BACKUP SLIDES

Reductions

vadd vl =2 v0.s

(MVL=8, VL=5, F32)
7 6 5 4 3 2 1 0

32b 32b 32b 32b 32b 32b 32b 32b
4+—— P4+ 4¢——P4¢——P4¢—P4¢—r<4¢—r<¢—>
for (1 = 0; 1 < vl; 1++)

o h | g fleldlclbla

tmp = tmp + v1[i]

vO[0O] = tmp;

* Implementations are free to replicate the final “sum”

. : 0 ERERERERERE
across all elements in the dest vector register vOs | I I I I e V)

7th RISC-V Workshop, Nov'17 46

Promotion Table (large font)

Source Type promotion
164 18 U4 |U32 |Ul6 |U8 |[F64 |F32 |F16
164 P t t t t
132 | t | p t t t |t |t
116 t t P t t t t t t
18 t t t | p| t t t t |t t t
ued t t t t P t t t
Dest
Type U32 | t t t |t t o) t t t
Ule | t t t |t t t P t t t
U8 t t t t t t t p t t t
F64 t t t |t t t t t| p
F32 t t t |t t t t t |t
F16 t t t /mEm Vw;cmsn p N;c _ t t t

