
BOOM	v2	
an	open-source	out-of-order	RISC-V	core

Christopher	Celio,	Pi-Feng	Chiu,	Borivoje	Nikolic,	David	PaAerson,	Krste	Asanović	
2017	RISC-V	Workshop	#7

UC Berkeley

UC Berkeley What	is	BOOM?

2http://ucb-bar.github.io/riscv-boom

◾"Berkeley	Out-of-Order	Machine"	
◾out-of-order	
◾superscalar	
◾ implements	RV64G,	boots	Linux	
◾ It	is	synthesizable	
◾ it	is	open-source	
◾wriAen	in	Chisel	(16k	loc)	
◾ It	is	parameterizable	generator	
◾built	on	top	of	Rocket-chip	SoC	Ecosystem

integer

load/store

fp

fetch
dec, ren,

& dis

issue/rrdqueues

BOOMv2-2f4i

wb

UC Berkeley BOOM	fits	into	Rocket-chip	SoC

3

BOOM

Rocket

Rocket

UC Berkeley Lots	of	neat	features

4

◾ advanced	branch	predicTon	
- BTB,	RAS	(1-cycle)	
- gshare	and	TAGE-based	condiTonal	predictor	implementaTons	(3-cycle)	
- fits	in	single-port	SRAM	

◾ loads	can	issue	out-of-order	wrt	to	other	loads,	stores	
◾ hardware	performance	counters	(~40	events)

FRF
lsu

btb
bpd ID

IRFIQ1IQ0

ROB

imul
DFMA

SFMA

IQ2

idiv

mshrs

csr

dec

UC Berkeley Parameterized	Superscalar

5

val	exe_units	=	ArrayBuffer[ExecutionUnit]()	
exe_units	+=	Module(new	ALUExeUnit(is_branch_unit				=	true	
																																				,	has_fpu								=	true	
																																				,	has_mul								=	true	
))	
exe_units	+=	Module(new	ALUMemExeUnit(fp_mem_support	=	true	
																																				,	has_div								=	true	
))

Issue
Select

Regfile
Writeback

dual-issue (5r,3w)

bypassing

ALU

div

LSUAgen D$

bypassing

ALU

FPU

bypass
network

Regfile
Read

imul

UC Berkeley Parameterized	Superscalar

5

OR

val	exe_units	=	ArrayBuffer[ExecutionUnit]()	
exe_units	+=	Module(new	ALUExeUnit(is_branch_unit				=	true	
																																				,	has_fpu								=	true	
																																				,	has_mul								=	true	
))	
exe_units	+=	Module(new	ALUMemExeUnit(fp_mem_support	=	true	
																																				,	has_div								=	true	
))

Issue
Select

Regfile
Writeback

dual-issue (5r,3w)

bypassing

ALU

div

LSUAgen D$

bypassing

ALU

FPU

bypass
network

Regfile
Read

imul

exe_units	+=	Module(new	ALUExeUnit(is_branch_unit	=	true))	
exe_units	+=	Module(new	ALUExeUnit(has_fpu	=	true	
																																	,	has_mul	=	true	
))	
exe_units	+=	Module(new	ALUExeUnit(has_div	=	true))	
exe_units	+=	Module(new	MemExeUnit())	

Issue
Select

Regfile
Writeback

Quad-issue (9r,4w)

ALU

div

LSUAgen D$

ALU

imul

FPU

ALU

bypassing

bypass
network

Regfile
Read

Async. FIFOs + level shifters

BOOM Domain (0.5V-1V)

Uncore
Domain

VDD
VDDCORE

BOOM Core

L1-to-L2 Crossbar

MMIO Router
Read/write all counters

and control registers

1MB L2 Cache
Bank0

μArch
Counters

μArch
Counters

JTAG
Digital

IO Pads

Configurable Memory Traffic Switcher

To FPGA GPIO

BTB

Load/Store Unit

int int agen

Phys. Int RF
(semi-custom

bit cell)

FPU

6KB
Br Pred

Issue Units

16KB Scalar
Inst. Cache

(foundry 6T
SRAM Macros)

Arbiter

16KB Scalar
Data Cache

(foundry 8T
SRAM Macros)

Phys.
FP RF

Tile Link IO Bidirectional SERDES

UC Berkeley Good	news

◾ BOOM	has	(finally)	been	taped	
out!		
- 2017	Aug	15	

◾ TSMC	28	nm	HPM	
◾ Academic	test-chip	
◾ BOOM	is	in	support	of	studying	
other	features

6

BOOM	v2	
taping	out	an	out-of-order	processor		
with	a	2	person	team	in	4	months	

Christopher	Celio,	Pi-Feng	Chiu,	Borivoje	Nikolic,	David	PaAerson,	Krste	Asanović	
2017	CARRV	Workshop

UC Berkeley

Processor
SiFive U54

Rocket
(RV64GC)

Berkeley
BOOMv2

UltraSPARC
T2

ARM
Cortex-A9

Intel
Xeon Ivy

Language Chisel Chisel Verilog - SystemVerilog

Core LoC 8,000 16,000 290,000 - NDA

Total LoC 34,000 50,000 1,300,000 - NDA

Foundry TSMC TSMC TI TSMC Intel

Technology 28 nm
(HPC)

28 nm
(HPM)

65 nm 40 nm
(G)

22 nm

Core+L1 Area 0.54 mm2 0.52 mm2 ~12 mm2 ~2.5 mm2 ~12 mm2

Coremark/MHz 2.75 3.92 1.64* 3.71 5.60

Frequency 1.5 GHz 1.2 GHz** 1.17 GHz 1.4 GHz 3.3 GHz

UC Berkeley Comparison:	Industry

8

core+L1+L216kB/16kB

Processor
SiFive U54

Rocket
(RV64GC)

Berkeley
BOOMv2

UltraSPARC
T2

ARM
Cortex-A9

Intel
Xeon Ivy

Language Chisel Chisel Verilog - SystemVerilog

Core LoC 8,000 16,000 290,000 - NDA

Total LoC 34,000 50,000 1,300,000 - NDA

Foundry TSMC TSMC TI TSMC Intel

Technology 28 nm
(HPC)

28 nm
(HPM)

65 nm 40 nm
(G)

22 nm

Core+L1 Area 0.54 mm2 0.52 mm2 ~12 mm2 ~2.5 mm2 ~12 mm2

Coremark/MHz 2.75 3.92 1.64* 3.71 5.60

Frequency 1.5 GHz 1.2 GHz** 1.17 GHz 1.4 GHz 3.3 GHz

UC Berkeley Comparison:	Industry

9

core+L1+L2

*From	eembc.org.	32	threads/8	cores	achieve	13	Cm/MHz.		
**EsTmated

16kB/16kB

http://eembc.org

UC Berkeley Limits	of	EducaPonal	Libraries

◾ BOOMv1	
- EducaTonal	45	nm	libraries	
- CACTI	model	for	SRAMs	
- synthesized	flip-flops	for	most	non-cache	memory	arrays	
- good	for	catching	small	Tming	bugs	
- not	accurate	enough	to	jusTfy	sweeping	redesigns	

◾ BOOMv2	
- TSMC	28	nm	HPM	(high	performance	mobile)	
- LVT-based	standard	cells	
-memory	compiler	(one-	and	two-port)

10

UC Berkeley 4	months	of	agile	tape-out

11

*ignore the Y-axis:
 -- too many parameters/variables changing between each run
 -- doesn't capture DRC violations

UC Berkeley BOOM	v1

12

Fetch

Decode &
Rename

Unified
Issue

Window

Physical
Scalar Register

File (7x3)
(PRF)

ROB

Commit
wakeup

uop tags

inst

Fetch: 2w
Issue: 3-issue

PRF: 7r3w (110)2

2

2

3

LSU

Data
cache

ALU
FPU iMul

ALU
FDiv IDiv

BOOMv1-2f3i

int/idiv/fdiv

load/store

int/fma

fetch

issue/rrd
queues

wb
dec, ren,

& dis

◾ short	pipeline	
- inspired	by	R10K,	21264,	Cortex-A9	

◾ unified	issue	window

UC Berkeley BOOMv1:	Frontend

13

I$

Fetch1

PC1

Fetch2

µBTB

Fetch0

PC2

hash

TLB

idx

next-pc

taken

I-Cache
backend
redirect
target pre-decode

& target
compute

Fetch
Buffer

BPD redirect

UC Berkeley BOOMv1:	Frontend

13

I$

Fetch1

PC1

Fetch2

µBTB

Fetch0

PC2

hash

TLB

idx

next-pc

taken

I-Cache
backend
redirect
target pre-decode

& target
compute

Fetch
Buffer

BPD redirect

idx

 redirect

I$
Fetch
Buffer

Fetch1

PC1

Fetch2

+8
backend
redirect
target

Fetch0

PC2

BPD

redirect

BTB

Fetch3

hash

TLB

pre-decode
& target
compute

checker
{hit,

target}next-pc

taken

I-Cache

decode info

RAS

I$

Fetch1

PC1

Fetch2

µBTB

Fetch0

PC2

hash

TLB

idx

next-pc

taken

I-Cache
backend
redirect
target pre-decode

& target
compute

Fetch
Buffer

BPD redirect

UC Berkeley Frontend

14

BOOMv1

BOOMv2

◾ BTB	in	SRAM	
- set-associaTve	
- parTally	tagged	
- Checker	to	verify	integrity	

◾ BPD	(CondiTonal	Predictor)	
- hash	gets	enTre	stage	
- redirect	based	on	BTB	
- redirect	pushed	back	(I$)

UC Berkeley Regfile:	(the	first	P&R)

◾ Regfile	blows	up	
◾ criTcal	paths	in	issue-select,	
register	read

15

regfile
rob

iq

rename

lsu

mshr

bpd
alu

fpu

alu

UC Berkeley BOOMv2

◾ split	unified	issue	window	(1	day)	
◾ split	physical	register	file	(1	week)	
◾ issue/register	read	separate	stages	(~1	day)	
◾ 2	stage	rename	(~1	week)	
◾ 3	stage	fetch	(3	weeks)

16

Fetch

Decode &
Rename

Unified
Issue

Window

Physical
Scalar Register

File (7x3)
(PRF)

ROB

Commit
wakeup

uop tags

inst

Fetch: 2w
Issue: 3-issue

PRF: 7r3w (110)2

2

2

3

LSU

Data
cache

Before

ALU
FPU iMul

ALU
FDiv IDiv

Fetch

Decode &
Rename1

FP Issue
Window

Physical
FP Register
File (3x2)
(PFRF)

ROB

Commit

wakeup

uop tags

inst

Fetch: 2w
Issue: 4-issue

PIRF: 6r3w (96)
PFRF: 3r1w (48)

2

2

2

LSU

Data
cache

FPU FDv
ALU

iMul iDiv

Physical
 Int Register

File (6x3)
(PIRF)

uop tags uop tags

ALU

ALU Issue
Window

Mem Issue
Window

toInt
(LL

wport)

toPFRF
(LL wport)

2

I2F

toPFRF
(LL wport)

F2I

Rename2 &
Dispatch

After
integer

load/store

fp

fetch
dec, ren,

& dis

issue/rrdqueues

BOOMv2-2f4i

wb

UC Berkeley Regfile	Challenges

◾ foundaTonal	IP	provide	memories	with	single	and	
dual-port	memories	

◾ companies	build	their	own	hand-crahed	register	files	
◾ not	enough	labor	in	academia	to	support	a	customized	
register	file

17

... ...

WBL0 WBLB0

WWL0

WBLn WBLBn

WWLnWWLn

RWL
[m-1,0]

RBL[m-1,0]x n write ports

x m read ports

UC Berkeley Regfile

18

•  Routing 4480 wires
causes congestion issues

Q

4480

70x64 flip-flops

.....
...

..
..
..
..
..
..
.

read_data{5-0}[63-0]

7-
de

ep
 lo

gi
c

tre
e

.......

...
...

...

.......

70
 e

nt
rie

s

64 bits

read_data{5-0}[63] read_data{5-0}[0]

RF unit cell

•  Reduce read_data routing
wires to 384

WD0

WD1

WD2

WS[1:0]

D

EN

WE

Q

OE[5-0]

Tri-state buf [5-0]

R
D

 [5
-0

]

RF unit cell

Congestion!

Tri-state buffer
mimics the PG
in a custom RF
cell so that
read data wire
can be shared

synthesized array

WS

WD

valid
addr
data

decode

WE

Write Port (x3)

addr
Read Port (x6)

Regfile Bit Block

2

6
RE

Flip flop
(dff)D

Q

decode

RD

read data wires

UC Berkeley Regfile:	Our	quick	soluPon

◾ hand-crah	our	own	bit	block	out	of	standard	cells	
- tri-state	to	drive	read	wires	
- hierarchical	bitlines	

◾ pre-place	arrays	of	bit	blocks	
◾ let	router	handle	the	18	wires	per	1	flip-flop	
◾ blackbox	in	Chisel	
- simulate	control	using	Chisel	model	
- verify	at	gate-level 19

BOOMv1-2f3i

int/idiv/fdiv

load/store

int/fma

fetch

issue/rrd
queues

wb

integer

load/store

fp

fetch
dec, ren,

& dis

issue/rrdqueues

BOOMv2-2f4i

wb

UC Berkeley Before	and	AXer

20

UC Berkeley Results

21

UC Berkeley Results

◾ Hard	to	compute	--	not	apples	to	oranges
- a	lot	of	the	work	was	about	design	rule	checks,	not	
performance

21

UC Berkeley Results

◾ Hard	to	compute	--	not	apples	to	oranges
- a	lot	of	the	work	was	about	design	rule	checks,	not	
performance

◾ Roughly	25%	decrease	in	clock	period
◾ Roughly	20%	decrease	in	Coremark/MHz
- known	issue	from	load-use	delay

21

UC Berkeley Results

◾ Hard	to	compute	--	not	apples	to	oranges
- a	lot	of	the	work	was	about	design	rule	checks,	not	
performance

◾ Roughly	25%	decrease	in	clock	period
◾ Roughly	20%	decrease	in	Coremark/MHz
- known	issue	from	load-use	delay

◾ Barely	a	win?
◾ Changes	fixed	DRC	errors,	geometry	errors	(shorts),	
so...

21

UC Berkeley Results

◾ Hard	to	compute	--	not	apples	to	oranges
- a	lot	of	the	work	was	about	design	rule	checks,	not	
performance

◾ Roughly	25%	decrease	in	clock	period
◾ Roughly	20%	decrease	in	Coremark/MHz
- known	issue	from	load-use	delay

◾ Barely	a	win?
◾ Changes	fixed	DRC	errors,	geometry	errors	(shorts),	
so...
- infinitely	Faster!	BeAer!	Stronger!

21

UC Berkeley Agile	Hardware	Development
◾ RTL	hacking	can	be	very	agile	

- ~6	minutes	to	compile,	build,	and	run	"riscv-tests"	regression	
suite	(10	KHz	for	Verilator	simulator)	

- Chisel	allows	for	quick,	far-reaching	changes	
- generator	approach	allows	for	late-binding	design	decisions	
- small	changes,	improvements	(that	don't	affect	floor	plan)	are	
agile

22

UC Berkeley Agile	Hardware	Development
◾ RTL	hacking	can	be	very	agile	

- ~6	minutes	to	compile,	build,	and	run	"riscv-tests"	regression	
suite	(10	KHz	for	Verilator	simulator)	

- Chisel	allows	for	quick,	far-reaching	changes	
- generator	approach	allows	for	late-binding	design	decisions	
- small	changes,	improvements	(that	don't	affect	floor	plan)	are	
agile

◾ Physical	design	is	a	boAleneck	
- 2-3	hours	for	synthesis	results	
- 8-24	hours	for	p&r	results	
- too	much	value	provided	by	manual	intervenTon	
- reports	are	difficult	to	reason	about	
- sadly	can't	throw	this	at	a	computer	and	get	7	good	designs	a	
week	later

22

UC Berkeley Agile	Hardware	Development
◾ RTL	hacking	can	be	very	agile	

- ~6	minutes	to	compile,	build,	and	run	"riscv-tests"	regression	
suite	(10	KHz	for	Verilator	simulator)	

- Chisel	allows	for	quick,	far-reaching	changes	
- generator	approach	allows	for	late-binding	design	decisions	
- small	changes,	improvements	(that	don't	affect	floor	plan)	are	
agile

◾ Physical	design	is	a	boAleneck	
- 2-3	hours	for	synthesis	results	
- 8-24	hours	for	p&r	results	
- too	much	value	provided	by	manual	intervenTon	
- reports	are	difficult	to	reason	about	
- sadly	can't	throw	this	at	a	computer	and	get	7	good	designs	a	
week	later

◾VerificaTon	is	another	boAleneck	
- I	can	write	bugs	faster	than	I	can	find	them

22

UC Berkeley Future	DirecPons	(for	BOOM)

◾ A	lot	of	improvements	to	make	to	BOOM	
- Clear	direcTon	of	further	IPC/QoR	improvements

23

UC Berkeley Future	DirecPons	(for	me)

◾ See	Dave	Ditzel's	talk	from	yesterday	to	learn	more	
◾ RISC-V	Founding	Gold	Member	
- on	lots	of	working	groups!	

◾We	are	commiAed	to	maintaining	the	BOOM	open-
source	repository	

◾We're	hiring...

24

"Esperanto Technologies designs high-performance energy-efficient computing solutions."
- riscv.org

http://riscv.org

UC Berkeley A	2-person	tapeout	takes	a	village!

◾ RISC-V	ISA	
- very	out-of-order	friendly!	

◾ Chisel	hardware	construcTon	language	
- object-oriented,	funcTonal	programming	

◾ FIRRTL	
- exposed	RTL	intermediate	representaTon	(IR)	

◾ Rocket-chip	
- A	full	working	SoC	plarorm	built	around	the	Rocket	in-order	core	

◾ Thanks	to:	
- Krste	Asanović,	Rimas	Avizienis,	Jonathan	Bachrach,	ScoA	Beamer,	David	
Biancolin,	Christopher	Celio,	Henry	Cook,	Palmer	Dabbelt,	John	Hauser,	
Adam	Izraelevitz,	Sagar	Karandikar,	Ben	Keller,	Donggyu	Kim,	Jack	
Koenig,	Jim	Lawson,	Yunsup	Lee,	Richard	Lin,	Eric	Love,	MarTn	Maas,	
Chick	Markley,	Albert	Magyar,	Howard	Mao,	Miquel	Moreto,	Quan	
Nguyen,	Albert	Ou,	David	A.	PaAerson,	Brian	Richards,	Colin	Schmidt,	
Wenyu	Tang,	Stephen	Twigg,	Huy	Vo,	Andrew	Waterman,	Angie	Wang,	
and	more...

25

UC Berkeley QuesTons?

◾ Research	par*ally	funded	by	DARPA	Award	Number	HR0011-12-2-0016,	the	Center	for	
Future	Architecture	Research,	a	member	of	STARnet,	a	Semiconductor	Research	
Corpora*on	program	sponsored	by	MARCO	and	DARPA,	and	ASPIRE	Lab	industrial	
sponsors	and	affiliates	Intel,	Google,	Huawei,	Nokia,	NVIDIA,	Oracle,	and	Samsung.		

◾ Approved	for	public	release;	distribu*on	is	unlimited.	The	content	of	this	presenta*on	
does	not	necessarily	reflect	the	posi*on	or	the	policy	of	the	US	government	and	no	official	
endorsement	should	be	inferred.	

◾ Any	opinions,	findings,	conclusions,	or	recommenda*ons	in	this	paper	are	solely	those	of	
the	authors	and	does	not	necessarily	reflect	the	posi*on	or	the	policy	of	the	sponsors.	

26

Funding	Acknowledgements

