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UC Berkeley What	is	BOOM?

2http://ucb-bar.github.io/riscv-boom

◾"Berkeley	Out-of-Order	Machine"	
◾out-of-order	
◾superscalar	
◾ implements	RV64G,	boots	Linux	
◾ It	is	synthesizable	
◾ it	is	open-source	
◾wriAen	in	Chisel	(16k	loc)	
◾ It	is	parameterizable	generator	
◾built	on	top	of	Rocket-chip	SoC	Ecosystem
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UC Berkeley BOOM	fits	into	Rocket-chip	SoC
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UC Berkeley Lots	of	neat	features
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◾ advanced	branch	predicTon	
- BTB,	RAS	(1-cycle)	
- gshare	and	TAGE-based	condiTonal	predictor	implementaTons	(3-cycle)	
- fits	in	single-port	SRAM	

◾ loads	can	issue	out-of-order	wrt	to	other	loads,	stores	
◾ hardware	performance	counters	(~40	events)
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UC Berkeley Parameterized	Superscalar
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val	exe_units	=	ArrayBuffer[ExecutionUnit]()	
exe_units	+=	Module(new	ALUExeUnit(is_branch_unit				=	true	
																																				,	has_fpu								=	true	
																																				,	has_mul								=	true	
																																				))	
exe_units	+=	Module(new	ALUMemExeUnit(fp_mem_support	=	true	
																																				,	has_div								=	true	
																																				))
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UC Berkeley Parameterized	Superscalar
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OR

val	exe_units	=	ArrayBuffer[ExecutionUnit]()	
exe_units	+=	Module(new	ALUExeUnit(is_branch_unit				=	true	
																																				,	has_fpu								=	true	
																																				,	has_mul								=	true	
																																				))	
exe_units	+=	Module(new	ALUMemExeUnit(fp_mem_support	=	true	
																																				,	has_div								=	true	
																																				))
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exe_units	+=	Module(new	ALUExeUnit(is_branch_unit	=	true))	
exe_units	+=	Module(new	ALUExeUnit(has_fpu	=	true	
																																	,	has_mul	=	true	
																																	))	
exe_units	+=	Module(new	ALUExeUnit(has_div	=	true))	
exe_units	+=	Module(new	MemExeUnit())	
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Async. FIFOs + level shifters
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UC Berkeley Good	news

◾ BOOM	has	(finally)	been	taped	
out!		
- 2017	Aug	15	

◾ TSMC	28	nm	HPM	
◾ Academic	test-chip	
◾ BOOM	is	in	support	of	studying	
other	features

6



BOOM	v2	
taping	out	an	out-of-order	processor		
with	a	2	person	team	in	4	months	

Christopher	Celio,	Pi-Feng	Chiu,	Borivoje	Nikolic,	David	PaAerson,	Krste	Asanović	
2017	CARRV	Workshop

UC Berkeley



Processor
SiFive U54 

Rocket 
(RV64GC)

Berkeley 
BOOMv2

UltraSPARC 
T2

ARM 
Cortex-A9

Intel  
Xeon Ivy

Language Chisel Chisel Verilog - SystemVerilog

Core LoC 8,000 16,000 290,000 - NDA

Total LoC 34,000 50,000 1,300,000 - NDA

Foundry TSMC TSMC TI TSMC Intel

Technology 28 nm 
(HPC)

28 nm 
(HPM)

65 nm 40 nm 
(G)

22 nm

Core+L1 Area 0.54 mm2 0.52 mm2 ~12 mm2 ~2.5 mm2 ~12 mm2

Coremark/MHz 2.75 3.92 1.64* 3.71 5.60

Frequency 1.5 GHz 1.2 GHz** 1.17 GHz 1.4 GHz 3.3 GHz

UC Berkeley Comparison:	Industry
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core+L1+L2

*From	eembc.org.	32	threads/8	cores	achieve	13	Cm/MHz.		
**EsTmated

16kB/16kB

http://eembc.org


UC Berkeley Limits	of	EducaPonal	Libraries

◾ BOOMv1	
- EducaTonal	45	nm	libraries	
- CACTI	model	for	SRAMs	
- synthesized	flip-flops	for	most	non-cache	memory	arrays	
- good	for	catching	small	Tming	bugs	
- not	accurate	enough	to	jusTfy	sweeping	redesigns	

◾ BOOMv2	
- TSMC	28	nm	HPM	(high	performance	mobile)	
- LVT-based	standard	cells	
-memory	compiler	(one-	and	two-port)
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UC Berkeley 4	months	of	agile	tape-out
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*ignore the Y-axis:
  -- too many parameters/variables changing between each run
  -- doesn't capture DRC violations



UC Berkeley BOOM	v1
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◾ short	pipeline	
- inspired	by	R10K,	21264,	Cortex-A9	

◾ unified	issue	window



UC Berkeley BOOMv1:	Frontend
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UC Berkeley BOOMv1:	Frontend
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UC Berkeley Frontend
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BOOMv1

BOOMv2

◾ BTB	in	SRAM	
- set-associaTve	
- parTally	tagged	
- Checker	to	verify	integrity	

◾ BPD	(CondiTonal	Predictor)	
- hash	gets	enTre	stage	
- redirect	based	on	BTB	
- redirect	pushed	back	(I$)



UC Berkeley Regfile:	(the	first	P&R)

◾ Regfile	blows	up	
◾ criTcal	paths	in	issue-select,	
register	read
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UC Berkeley BOOMv2

◾ split	unified	issue	window	(1	day)	
◾ split	physical	register	file	(1	week)	
◾ issue/register	read	separate	stages	(~1	day)	
◾ 2	stage	rename	(~1	week)	
◾ 3	stage	fetch	(3	weeks)
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UC Berkeley Regfile	Challenges

◾ foundaTonal	IP	provide	memories	with	single	and	
dual-port	memories	

◾ companies	build	their	own	hand-crahed	register	files	
◾ not	enough	labor	in	academia	to	support	a	customized	
register	file
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UC Berkeley Regfile
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•  Routing 4480 wires 
causes congestion issues 
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UC Berkeley Regfile:	Our	quick	soluPon

◾ hand-crah	our	own	bit	block	out	of	standard	cells	
- tri-state	to	drive	read	wires	
- hierarchical	bitlines	

◾ pre-place	arrays	of	bit	blocks	
◾ let	router	handle	the	18	wires	per	1	flip-flop	
◾ blackbox	in	Chisel	
- simulate	control	using	Chisel	model	
- verify	at	gate-level 19



BOOMv1-2f3i
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UC Berkeley Results
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UC Berkeley Results

◾ Hard	to	compute	--	not	apples	to	oranges
- a	lot	of	the	work	was	about	design	rule	checks,	not	
performance
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UC Berkeley Results

◾ Hard	to	compute	--	not	apples	to	oranges
- a	lot	of	the	work	was	about	design	rule	checks,	not	
performance

◾ Roughly	25%	decrease	in	clock	period
◾ Roughly	20%	decrease	in	Coremark/MHz
- known	issue	from	load-use	delay
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UC Berkeley Results

◾ Hard	to	compute	--	not	apples	to	oranges
- a	lot	of	the	work	was	about	design	rule	checks,	not	
performance

◾ Roughly	25%	decrease	in	clock	period
◾ Roughly	20%	decrease	in	Coremark/MHz
- known	issue	from	load-use	delay

◾ Barely	a	win?
◾ Changes	fixed	DRC	errors,	geometry	errors	(shorts),	
so...
- infinitely	Faster!	BeAer!	Stronger!
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UC Berkeley Agile	Hardware	Development
◾ RTL	hacking	can	be	very	agile	

- ~6	minutes	to	compile,	build,	and	run	"riscv-tests"	regression	
suite	(10	KHz	for	Verilator	simulator)	

- Chisel	allows	for	quick,	far-reaching	changes	
- generator	approach	allows	for	late-binding	design	decisions	
- small	changes,	improvements	(that	don't	affect	floor	plan)	are	
agile

22



UC Berkeley Agile	Hardware	Development
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- ~6	minutes	to	compile,	build,	and	run	"riscv-tests"	regression	
suite	(10	KHz	for	Verilator	simulator)	

- Chisel	allows	for	quick,	far-reaching	changes	
- generator	approach	allows	for	late-binding	design	decisions	
- small	changes,	improvements	(that	don't	affect	floor	plan)	are	
agile

◾ Physical	design	is	a	boAleneck	
- 2-3	hours	for	synthesis	results	
- 8-24	hours	for	p&r	results	
- too	much	value	provided	by	manual	intervenTon	
- reports	are	difficult	to	reason	about	
- sadly	can't	throw	this	at	a	computer	and	get	7	good	designs	a	
week	later

22
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- generator	approach	allows	for	late-binding	design	decisions	
- small	changes,	improvements	(that	don't	affect	floor	plan)	are	
agile

◾ Physical	design	is	a	boAleneck	
- 2-3	hours	for	synthesis	results	
- 8-24	hours	for	p&r	results	
- too	much	value	provided	by	manual	intervenTon	
- reports	are	difficult	to	reason	about	
- sadly	can't	throw	this	at	a	computer	and	get	7	good	designs	a	
week	later

◾VerificaTon	is	another	boAleneck	
- I	can	write	bugs	faster	than	I	can	find	them
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UC Berkeley Future	DirecPons	(for	BOOM)

◾ A	lot	of	improvements	to	make	to	BOOM	
- Clear	direcTon	of	further	IPC/QoR	improvements
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UC Berkeley Future	DirecPons	(for	me)

◾ See	Dave	Ditzel's	talk	from	yesterday	to	learn	more	
◾ RISC-V	Founding	Gold	Member	
- on	lots	of	working	groups!	

◾We	are	commiAed	to	maintaining	the	BOOM	open-
source	repository	

◾We're	hiring...
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"Esperanto Technologies designs high-performance energy-efficient computing solutions." 
- riscv.org

http://riscv.org


UC Berkeley A	2-person	tapeout	takes	a	village!

◾ RISC-V	ISA	
- very	out-of-order	friendly!	

◾ Chisel	hardware	construcTon	language	
- object-oriented,	funcTonal	programming	

◾ FIRRTL	
- exposed	RTL	intermediate	representaTon	(IR)	

◾ Rocket-chip	
- A	full	working	SoC	plarorm	built	around	the	Rocket	in-order	core	

◾ Thanks	to:	
- Krste	Asanović,	Rimas	Avizienis,	Jonathan	Bachrach,	ScoA	Beamer,	David	
Biancolin,	Christopher	Celio,	Henry	Cook,	Palmer	Dabbelt,	John	Hauser,	
Adam	Izraelevitz,	Sagar	Karandikar,	Ben	Keller,	Donggyu	Kim,	Jack	
Koenig,	Jim	Lawson,	Yunsup	Lee,	Richard	Lin,	Eric	Love,	MarTn	Maas,	
Chick	Markley,	Albert	Magyar,	Howard	Mao,	Miquel	Moreto,	Quan	
Nguyen,	Albert	Ou,	David	A.	PaAerson,	Brian	Richards,	Colin	Schmidt,	
Wenyu	Tang,	Stephen	Twigg,	Huy	Vo,	Andrew	Waterman,	Angie	Wang,	
and	more...
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