

RISC-V DSP (P) Extension Proposal

2018-5-9

Dr. Chuan-Hua Chang Senior Director, RD/Architecture

Andes Technology

❖ Taiwan-based CPU IP company with over 2.5billion Andes-Embedded SoCs shipped in diverse applications.

- Taking RISC-V to those markets with the solutions we developed in the past 13 years.
- A major contributor to RISC-V tools such as GCC, binutils, newlib, and recently LLVM and LLD.

RISC-V DSP (P) Extension TG

- ❖ P extension task group charter
 - Define and ratify Packed-SIMD DSP extension instructions operating on XLEN-bit integer registers for embedded RISC-V processors.
 - Define compiler intrinsic functions that can be directly used in high-level programming languages.
- Chair: Chuan-Hua Chang, Andes Technology
- Co-chair: Richard Herveille, RoaLogic

RISC-V DSP (P) Extension Proposal

- ❖ DSP instruction set proposal based on AndeStar™ V3 DSP ISA.
 - User XLEN-bit GPRs.
 - Support saturation and rounding.
 - Support fixed-point and integer data types.
 - **SIMD**-instructions with 8b, 16b, 32b element size.
 - Non-SIMD DSP instructions operating on 16-bit, 32-bit and 64-bit data types.
 - 64-bit signed/unsigned addition & subtraction
 - 64-bit signed/unsigned multiplication & addition
 - \bullet E.g., 64 = 64 + 16x16 + 16x16 or
 - Φ E.g., 64 = 64 + 32x32

16-Bit SIMD Instructions

8-Bit SIMD Instructions

Dual 16x16 & 32-Bit Add/Sub

Dual 16x16 & 64-Bit Add/Sub

GPR vs Separate Register

- ❖ GPR-based SIMD is a more efficient, low power DSP solution for embedded systems running applications in various domains such as audio/speech decoding and processing, IoT sensor data processing, wearable fitness devices, etc.
- It addresses the need for high performance generic code processing, as well as digital signal processing.

Ease of Use

- Provide data types and instructions that can be recognized and used by a compiler.
- Provide intrinsic functions for software developers to use the DSP instructions directly in C/C++ code.
- Provide optimized DSP libraries/middlewares covering common DSP functions and algorithms.
 - AndeStar[™] V3 core performance: D10 is 79% faster than N10.

64-bit Data Type

- Use pairs of GPRs on RV32.
- ❖ Use a GPR on RV64.
- Needed for compiler to generate DSP instructions automatically.
- ❖ The 64-bit operand type is an interface specification. An implementation can still implement 2R1W register file with multi-cycle reads/writes to support the 64-bit type on RV32.

DSP ISA Performance

Helix MP3 decoder

GCC Compiler	Decode (MCPS)
Compile with 32b base ISA	22.64
Compile with 32b base+DSP ISA	10.35
Cycle reduction %	54%
Cycle % of 64b paired-GPR insts	~70%

❖ G.729 codec

	Encode (MCPS)	Decode (MCPS)
Compiler alone	95.45	26.83
Intrinsic + Compiler	26.31	6.02
Cycle reduction %	72%	78%

* MCPS: Millions of Cycles Per Second

AMR-WB Performance

N10: Base ISA + 1-issue pipeline

D10: Base + DSP ISA + 1-issue pipeline

• D15: Base + DSP ISA + 2-issue pipeline

The benchmarking numbers are in MCPS. (Million Cycle Per Second) For all the test vectors, the average (AVG) numbers are concluded. ANSI-C Code for the AMR-WB speech codec:

http://www.etsi.org/deliver/etsi_ts/126100_126199/126173/14.00.00_60/ts_126173v140000p0.zip

DSP Library Performance Speedup

P Task Group Progress

- In the process of discussion with Technical Committee Chair and Co-chair to create the task group.
- After the task group is created, TG will arrange bi-weekly meetings and publicly invite people to participate.

Thank You!

www.andestech.com

