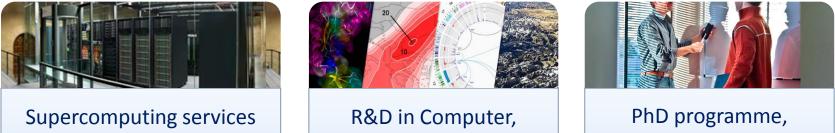


Barcelona Supercomputing Center Centro Nacional de Supercomputación



European Processor Initiative & RISC-V

**Prof. Mateo Valero** BSC Director



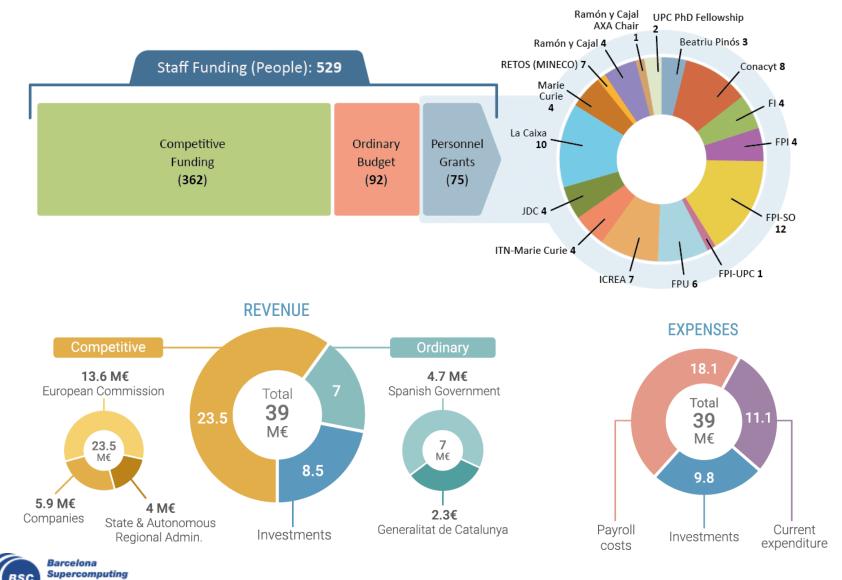

RISC-V Workshop, Barcelona

9/May/2018

### Barcelona Supercomputing Center Centro Nacional de Supercomputación

#### **BSC-CNS objectives**




Life, Earth and Engineering Sciences PhD programme, technology transfer, public engagement





to Spanish and EU researchers

### People and Resources Data as of 31st of December 2017



Center Centro Nacional de Supercomputación

### **Context: The international Exascale challenge**

- Sustained real life application performances, not just Linpack...
- Exascale will not just allow present solutions to run faster, but will enable new solutions not affordable with today HPC technology
- From simulation to high predictability for precise medicine, energy, climate change, autonomous driven vehicles...
- The International context (US, China, Japan and EU...)
- The European HPC programme
- The European Processor initiative
- BSC role





### November 2017 list (compact view)

| Rank | Site                  | Computer                          | Procs      | Rmax   | Rpeak   | Mflops/Watt |
|------|-----------------------|-----------------------------------|------------|--------|---------|-------------|
| 1    | Wuxi, China           | Sunway SW26010 260C               | 10.649.600 | 93.015 | 125.436 | 6.051       |
| ſ    | Cuangahay China       | Voon FF 2602 Dhi                  | 3.120.000  | 33.863 |         | 1 002       |
| 2    | Guangzhou, China      | Xeon E5-2692+Phi                  | 2736000    | 33.803 | 54.902  | 1.902       |
| 3    | CSCS, Switzerland     | Cray XC50, Xeon E2690 12C+P100    | 361.760    | 19.590 | 25 326  | 8.622       |
| 5    |                       |                                   | 297920     | 15.550 | 23.320  | 0.022       |
| 4    | JAMEST, Japan         | ZettaScaler Xeon D-1571, PEZY-SC2 | 19860000   | 19.135 | 28.192  | 14.173      |
|      | 5, 111201) Supari     |                                   | 19840000   |        |         |             |
| 5    | DOE/SC/Oak Ridge, US  | Cray XK7, Opteron 16C+K20         | 560.640    | 17.590 | 27.113  | 2.143       |
| U U  |                       |                                   | 261632     | 17.550 |         |             |
| 6    | DOE/NNSA/LLNL, US     | BlueGene/Q, BQC 16C               | 1.572.864  | 17.173 | 20.133  | 2.177       |
| 7    | DOE/NNSA/LANL/SNL, US | Cray XC40, IXeon Phi 7250 (KNL)   | 979.968    | 14.137 | 43.902  | 3.678       |
| 8    | DOE/SC/LBNL/NERSC, US | Cray XC40, Xeon Phi 7250 (KNL)    | 622.336    | 14.015 | 27.881  | 3.558       |
| 9    | JCA, Japan            | PRIMERGY, Xeon Phi 7250 (KNL)     | 556.104    | 13.555 | 24.913  | 4.896       |
| 10   | Riken/AICS, Japan     | K computer, SPARC64               | 705.024    | 10.510 | 11.280  | 830         |
| 11   | DOE/SC/Argonne, US    | BlueGene/Q, Power BQC 16C         | 786.432    | 8.587  | 10.066  | 2.177       |
| 12   | TACC Texas, US        | PowerEdge, Xeon Phi 7250 (KNL),   | 368.928    | 8.318  | 18.216  | N/A         |
|      |                       |                                   | 135.828    |        |         |             |
| 13   | GSIC-TIT, Japan       | SGI, Xeon E5, Tesla P100          | 120736     | 8.125  | 12.127  | 10.258      |
| 14   | CINECA, Italy         | Lenovo, Xeon Phi 7250 68C, KNL    | 314.384    | 7.471  | 15.372  | N/A         |
| 15   | UKMET, UK             | Cray XC40, Xeon E2695 18C         | 241.920    | 7.039  | 8.129   | N/A         |
| 16   | BSC, Spain            | Lenovo, Xeon Platinum 8160 24C    | 153.216    | 6.471  | 10.296  | 3.965       |





### ( According to HPL

|      |                      | J           |        |         | %          |
|------|----------------------|-------------|--------|---------|------------|
| Rank | Name                 | Country     | Rmax   | Rpeak   | Efficiency |
| 1    | Sunway<br>TaihuLight | China       | 93,015 | 125,436 | 74.15 %    |
| 2    | Tianhe-2             | China       | 33,863 | 54,902  | 61.68%     |
| 3    | Piz Daint            | Switzerland | 19,590 | 25,326  | 77.35%     |
| 4    | Gyoukou              | Japan       | 19,135 | 28,192  | 67.87%     |
| 5    | Titan                | US          | 17,590 | 27,113  | 64.87%     |
| 6    | Sequoia              | US          | 17,173 | 20,133  | 85.30%     |
| 7    | Trinity              | US          | 14,137 | 43,902  | 32.20%     |
| 8    | Cori                 | US          | 14,015 | 27,881  | 50.27%     |
| 9    | Oakforest-<br>PACS   | Japan       | 13,555 | 24,913  | 54.41%     |
| 10   | K Computer           | Japan       | 10,510 | 11,280  | 93.17%     |

### ( According to HPCG benchmark

|      | 0                    |      |         |                 |
|------|----------------------|------|---------|-----------------|
| Rank | Name                 | Rmax | Rpeak   | %<br>Efficiency |
| 1    | K Computer           | 603  | 11,280  | 5.34%           |
| 2    | Tianhe-2             | 580  | 54,902  | 1.06%           |
| 3    | Trinity              | 546  | 43,902  | 1.24%           |
| 4    | Piz Daint            | 486  | 25,326  | 1.92%           |
| 5    | Sunway<br>TaihuLight | 481  | 125,436 | 0.38%           |
| 6    | Oakforest-<br>PACS   | 385  | 24,913  | 1.54%           |
| 7    | Cori                 | 355  | 27,881  | 1.27%           |
| 8    | Sequoia              | 330  | 20,133  | 1.64%           |
| 9    | Titan                | 322  | 27,113  | 1.19%           |
| 10   | Mira                 | 167  | 10,066  | 1.66%           |





#### ( According to HPL

| Rank | Name                 | Country     | Rmax   | Rpeak   | %<br>Efficiency |
|------|----------------------|-------------|--------|---------|-----------------|
| 1    | Sunway<br>TaihuLight | China       | 93,015 | 125,436 | 74.15 %         |
| 2    | Tianhe-2             | China       | 33,863 | 54,902  | 61.68%          |
| 3    | Piz Daint            | Switzerland | 19,590 | 25,326  | 77.35%          |
| 4    | Gyoukou              | Japan       | 19,135 | 28,192  | 67.87%          |
| 5    | Titan                | US          | 17,590 | 27,113  | 64.87%          |
| 6    | Sequoia              | US          | 17,173 | 20,133  | 85.30%          |
| 7    | Trinity              | US          | 14,137 | 43,902  | 32.20%          |
| 8    | Cori                 | US          | 14,015 | 27,881  | 50.27%          |
| 9    | Oakforest-<br>PACS   | Japan       | 13,555 | 24,913  | 54.41%          |
| 10   | K Computer           | Japan       | 10,510 | 11,280  | 93.17%          |
| 16   | Mare<br>nostrum      | Spain       | 6,471  | 10,296  | 62,85%          |

### ( According to HPCG benchmark

| Rank | Name                 | Rmax | Rpeak   | %<br>Efficiency |
|------|----------------------|------|---------|-----------------|
| 1    | K Computer           | 603  | 11,280  | 5.34%           |
| 2    | Tianhe-2             | 580  | 54,902  | 1.06%           |
| 3    | Trinity              | 546  | 43,902  | 1.24%           |
| 4    | Piz Daint            | 486  | 25,326  | 1.92%           |
| 5    | Sunway<br>TaihuLight | 481  | 125,436 | 0.38%           |
| 6    | Oakforest-<br>PACS   | 385  | 24,913  | 1.54%           |
| 7    | Cori                 | 355  | 27,881  | 1.27%           |
| 8    | Sequoia              | 330  | 20,133  | 1.64%           |
| 9    | Titan                | 322  | 27,113  | 1.19%           |
| 10   | Mira                 | 167  | 10,066  | 1.66%           |
| 15   | Mare<br>Nostrum      | 122  | 10,296  | 1,18%           |





| Rank | Previous rank | Machine                                    | Country       | Number of cores | GTEPS  |
|------|---------------|--------------------------------------------|---------------|-----------------|--------|
| 1    | 1             | K computer                                 | Japan         | 663,552         | 38,621 |
| 2    | 2             | Sunway TaihuLight                          | China         | 10,599,680      | 23,755 |
| 3    | 3             | DOE/NNSA/LLNL Sequoia                      | USA           | 1,572,864       | 23,751 |
| 4    | 4             | DOE/SC/Argonne National<br>Laboratory Mira | USA           | 786,432         | 14,982 |
| 5    | 5             | JUQUEEN                                    | Germany       | 262,144         | 5,848  |
| 6    | new           | ALCF Mira - 8192 partition                 | United States | 131,072         | 4,212  |
| 7    | 6             | ALCF Mira - 8192 partition                 | USA           | 131,072         | 3,556  |
| 8    | 7             | Fermi                                      | Italy         | 131,072         | 2,567  |
| 9    | new           | ALCF Mira - 4096 partition                 | United States | 65,536          | 2,348  |
| 10   | 8             | Tianhe-2 (MilkyWay-2)                      | China         | 196,608         | 2,061  |

# Green500



| Rank | TOP500<br>Rank | System                                                                                 | Cores      | Rmax<br>(TFlop/s) | Power<br>(kW) | Power Efficiency<br>(GFlops/watts) |
|------|----------------|----------------------------------------------------------------------------------------|------------|-------------------|---------------|------------------------------------|
| 1    | 259            | <b>Shoubu system B</b> - PEZY Computing<br><u>RIKEN</u> -Japan                         | 794,400    | 842.0             | 50            | 16.84                              |
| 2    | 307            | <b>Suiren2</b> - PEZY Computing<br><u>KEK</u> -Japan                                   | 762,624    | 788.2             | 47            | 16.77                              |
| 3    | 276            | Sakura - PEZY Computing<br>PEZY Computing K.KJapan                                     | 794,400    | 824.7             | 50            | 16.49                              |
| 4    | 149            | DGX SaturnV Volta - NVIDIA Tesla V100<br>NVIDIA Corporation -United States             | 22,440     | 1,070.0           | 97            | 11.03                              |
| 5    | 4              | <b>Gyoukou</b> - PEZY-SC2 700Mhz<br>Japan                                              | 19,860,000 | 19,135.8          | 1,350         | 14.17                              |
| 6    | 13             | <b>TSUBAME3.0</b> - NVIDIA Tesla P100 SXM2<br>Japan                                    | 135,828    | 8,125.0           | 792           | 10.26                              |
| 7    | 195            | <b>AIST AI Cloud</b> - NVIDIA Tesla P100 SXM2<br>Japan                                 | 23,400     | 961.0             | 76            | 12.64                              |
| 8    | 419            | <b>RAIDEN GPU subsystem</b> - NVIDIA Tesla<br>P100<br>Japan                            | 11,712     | 635.1             | 60            | 10.59                              |
| 9    | 115            | <b>Wilkes-2</b> - NVIDIA Tesla P100<br><u>University of Cambridge</u> - United Kingdom | 21,240     | 1,193.0           | 114           | 10.46                              |
| 10   | 3              | <b>Piz Daint -</b> NVIDIA Tesla P100<br>Switzerland                                    | 361,760    | 19,590.0          | 2,272         | 8.62                               |
| 33   | 16             | MareNostrum- Lenovo SD530<br>Barcelona Supercomputing Center<br>Spain                  | 153,216    | 6,470.8           | 1,632         | 3.97                               |

### Application processor performance MN3-MN4

| Application | Cores | Performance |
|-------------|-------|-------------|
| WRF         | 256   | 1.37        |
| VVNF        | 128   | 1.06        |
| GROMACS     | 1024  |             |
| GROWACS     | 192   | 1.19        |
|             | 2048  | 1.31        |
| NAMD        | 1024  | 1.17        |
| NAMD        | 728   | 1.25        |
|             | 512   | 1.20        |
| VASP        | 64    | 2.2         |
| VASP        | 32    | 2.0         |
|             | 96    | 2.24        |
| HPL         | 48    | 2.21        |



### From MN3 to MN4

# MareNostrum 4, chosen as the most beautiful data centre in the world

11 December 2017

The award, organised by DataCenter Dynamics, has been granted by popular vote.



MareNostrum 4 supercomputer has been the winner of the Most Beautiful Data Center in the world Prize, hosted by the Datacenter Dynamics (DCD) Company.

There are 15 prizes in different categories, besides the prize for the most beautiful data centre, which is elected by popular vote. MareNostrum 4 competed with such impressive facilities as the Switch Pyramid in Michigan, the Bahnhof Pionen in Stockholm or the Norwegian Green Mountain. BSC supercomputer has prevailed for its particular location, inside the chapel of Torre Girona, located in the North Campus of the Universitat Politècnica de Catalunya (UPC).

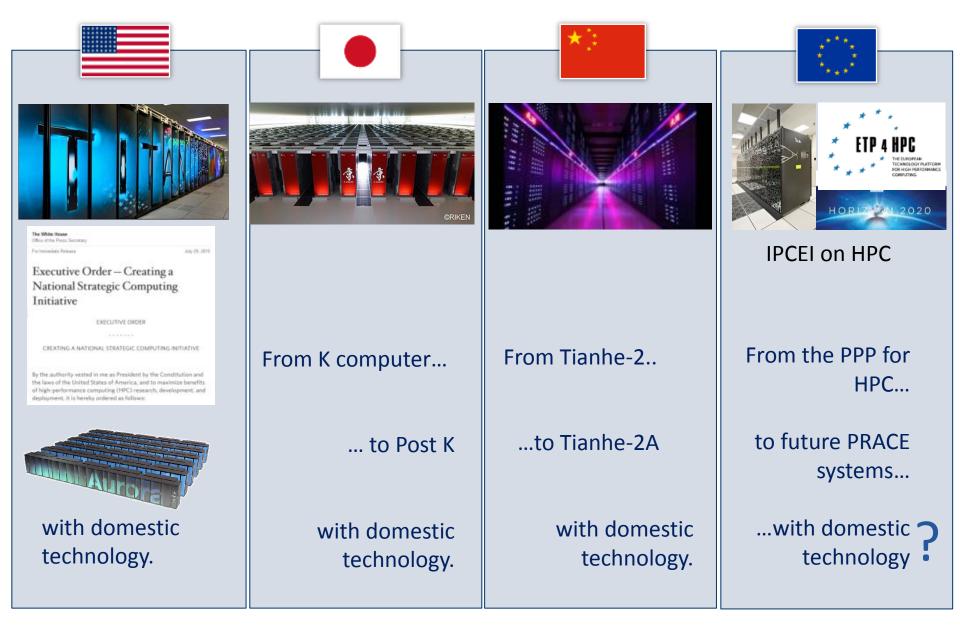
The awards ceremony took place on December 7<sup>th</sup> in London and both Mateo Valero, BSC Director, and Sergi Girona, Operations department Director, received the prize.

About MareNostrum 4



## MareNostrum4

Total peak performance: **13,7** Pflops

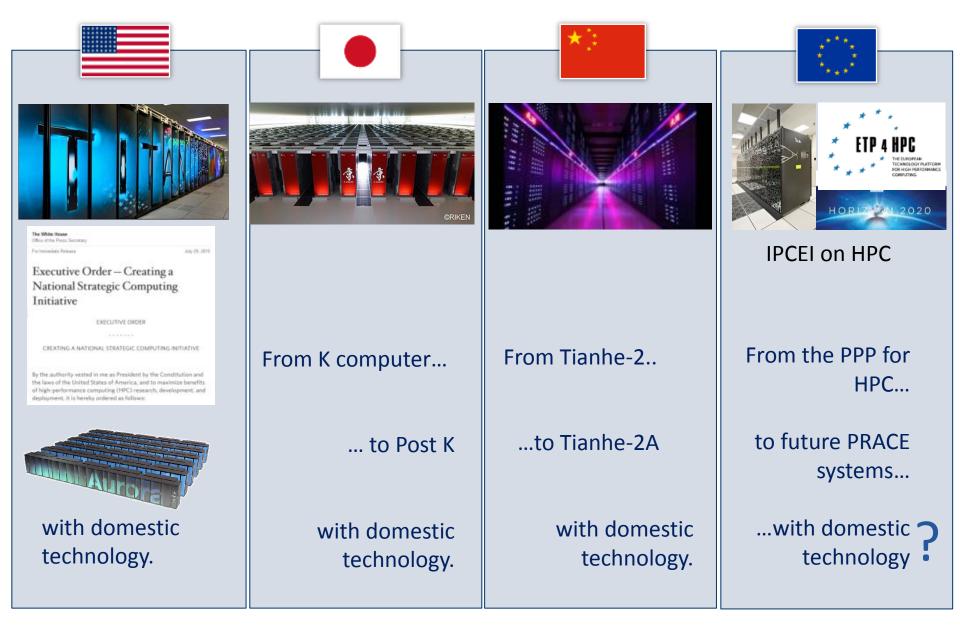

| General Purpose Cluster: | 11.15 Pflops | (1.07.2017) |
|--------------------------|--------------|-------------|
| CTE1-P9+Volta:           | 1.57 Pflops  | (1.03.2018) |
| CTE2-Arm V8:             | 0.5 Pflops   | (????)      |
| CTE3-KNH?:               | 0.5 Pflops   | (????)      |

MareNostrum 1 2004 – 42,3 Tflops 1<sup>st</sup> Europe / 4<sup>th</sup> World New technologies MareNostrum 2 2006 – 94,2 Tflops 1<sup>st</sup> Europe / 5<sup>th</sup> World New technologies MareNostrum 3 2012 – 1,1 Pflops 12<sup>th</sup> Europe / 36<sup>th</sup> World

83333

MareNostrum 4 2017 – 11,1 Pflops 2<sup>nd</sup> Europe / 13<sup>th</sup> World New technologies

### Worldwide HPC roadmaps




## US launched RFP for Exascale (April 2018)

- To develop at least two new exascale supercomputers for the DOE at a cost of up to \$1.8 billion
- The deployment timeline for these new systems begins in the third quarter of 2021, with ORNL's exascale supercomputer, followed by a third quarter 2022 system installation at LLNL. The ANL addition or upgrade, if it happens, will also take place in the third quarter of 2022.
- The new systems can't exceed 40 MW, with the preferred power draw in the 20 to 30 MW (including exascale, counting storage, cooling and any other auxiliary equipment)
- The other critical requirement is that the ORNL and ANL systems are architecturally diverse from one other
- Proposals are due in May, the bidders will be selected before the end of the Q2
- Each system is expected to cost between \$400 to \$600 million second quarter.



### Worldwide HPC roadmaps



### **EU HPC Ecosystem**

- Specifications of exascale prototypes
- Technological options for future systems

- Collaboration of HPC Supercomputing Centres and application CoEs
- Provision of HPC capabilities and expertise

 Identify applications for codesign of exascale systems

ETP 4

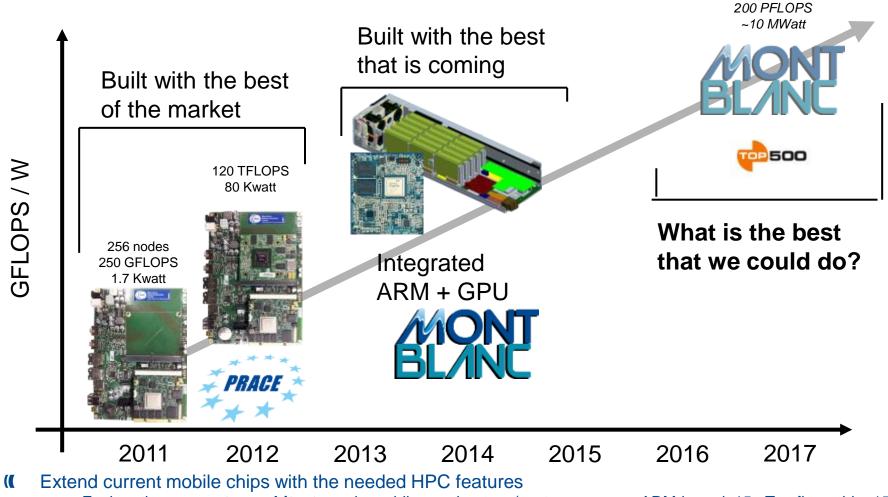
HPC

EUROPEAN

FOR HIGH Performance Compliting

ECHNOLOGY PLATFORM

 Innovative methods and algorithms for extreme parallelism of traditional & emerging applications


#### Centers of Excellence in HPC applications







### A big challenge, and a huge opportunity for Europe



- Explore the use vector architectures in mobile accelerators (vector processor ARM-based, 15+ Teraflops chip, 150 watts)... unique opportunity for Europe
- One design for all market segments: mobile, data centers, supercomputers



### **Mont-Blanc HPC Stack for ARM**



#### Industrial applications



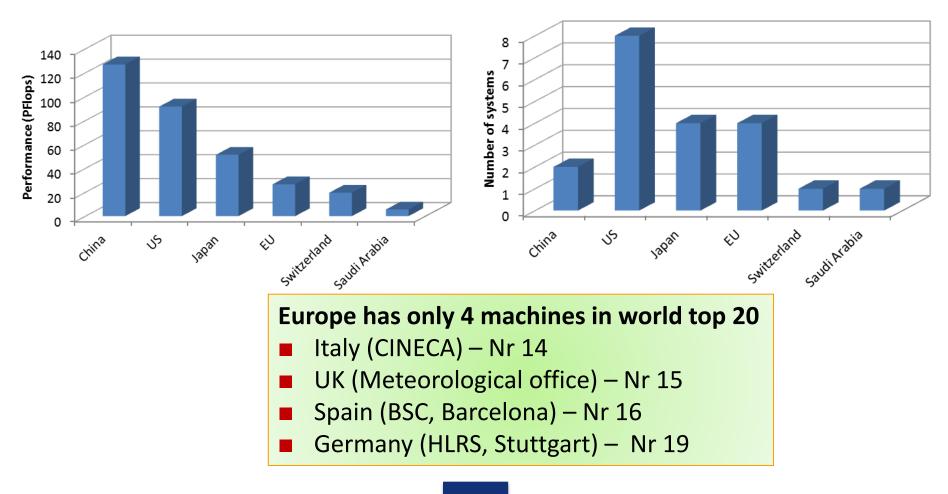
cea

Barcelona

Supercomputing Center

ional de Supercomputación

ARM




Barcelona Supercomputing Center Centro Nacional de Supercomputación



#### World Top 20 machines (status November 2017)

#### EU not in HPC world leaders



### **BSC and the European Commission**



Final plenary panel at ICT -Innovate, Connect, Transform conference, 22 October 2015 Lisbon, Portugal.

The transformational impact of excellent science in research and innovation

"Europe can develop an exascale machine with ARM technology. Maybe we need an consortium for HPC and Big Data".

> Seymour Cray Award Ceremony Nov. 2015 Mateo Valero





### The European Commission and HPC



#### **European Commission President** Jean-Claude Juncker

"Our ambition is for Europe to become one of the top 3 world leaders in high-performance computing by 2020"

Paris, 27 October 2015



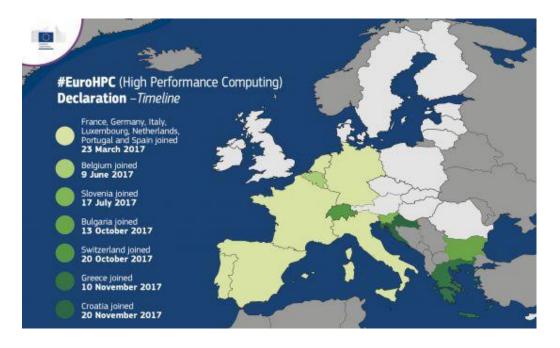


Barcelona Supercomputing Center Centro Nacional de Supercomputación

#### **Vice-President Andrus Ansip**

#### "I encourage even more EU countries to engage in this ambitious endeavour"

 Ministers from seven MS (France, Germany, Italy, Luxembourg, Netherlands, Portugal and Spain) sign a declaration to support the next generation of computing and data infrastructures


Digital Day Rome, 23 March 2017



### **The EuroHPC Declaration**

#### Declaration signed in Rome, March 23<sup>rd</sup>, 2017 by:





Agree to work towards the establishment of a **cooperation framework** -EuroHPC - for **acquiring and deploying an integrated exascale supercomputing infrastructure** that will be **available across the EU** for scientific communities as well as public and private partners

### **EuroHPC latest news:**



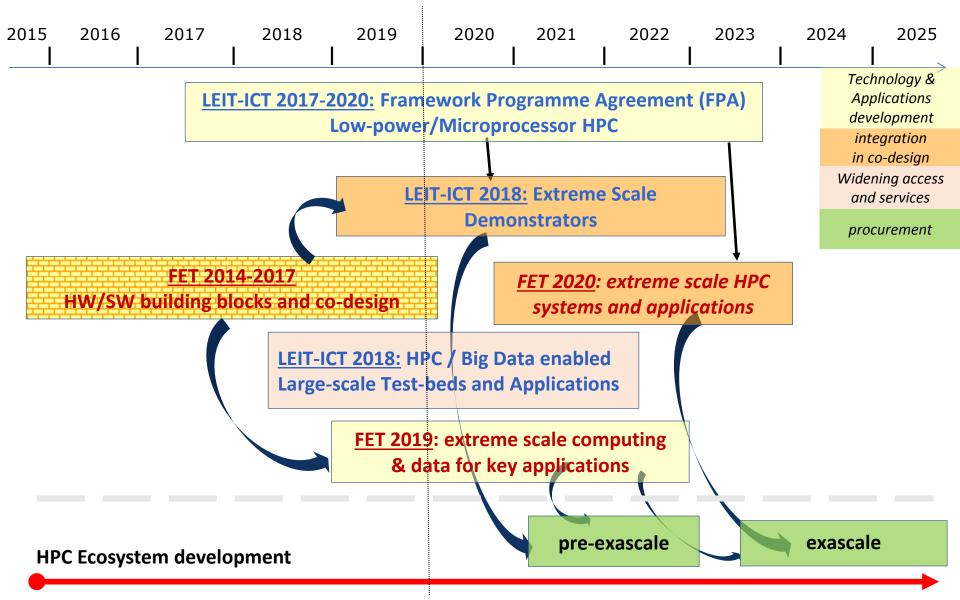
### ≻Europa portail: (January 2018)

http://europa.eu/rapid/press-release\_IP-18-64\_en.htm



**European Commission - Press release** 

#### Commission proposes to invest EUR 1 billion in world-class European supercomputers


Brussels, 11 January 2018

### The European Commission unveiled today its plans to invest jointly with the Member States in building a world-class European supercomputers infrastructure.

Supercomputers are needed to process ever larger amounts of data and bring benefits to the society in many areas from health care and renewable energy to car safety and cybersecurity.



### HPC timeline in H2020 LEIT/FET (indicative)





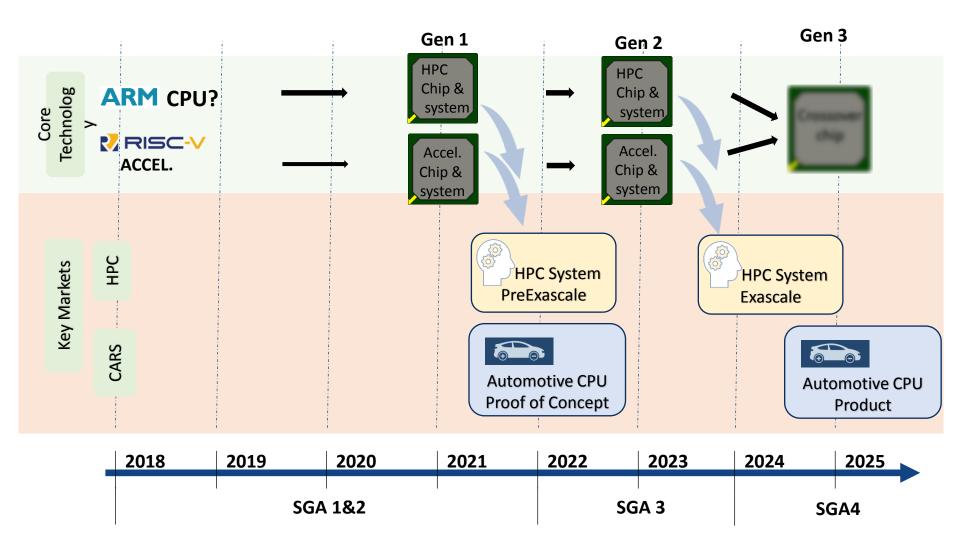
#### EPI 23 partners, from research to industry from consortium to EU high tech fabless $\overline{}$ BMW GROUP Rolls-Royce semidynamic<sup>s</sup> EXTOLL Elektrobit dustri dustri (infineon omotive Bull EPI Common BSC Barcelona Supercomputing Center **European Processor Initiative** Platform EU - FPA Semiconductor CRS UNIVERSITÀ DI PISA **CHALMERS** Research JÜLICH Fabless company Industrial hand of EPI TÉCNICO LISBOA 💹 Fraunhofer ETH zürich **1st EPI production** Incorporated by a **GENCI** couple EPI members and external investors

## **Three streams**

### > General purpose and Common Platform

- ARM SVE or other candidates...
- BULL: System integrator  $\rightarrow$  chip integrator

### >Accelerator


- RISC-V
- EU design: BSC, CEA, Chalmers, ETHZ, EXTOLL, E4, FORTH, Fraunhofer, IST, UNIBO, UNIZG, Semidynamics

### > Automotive

Infineon, BMW...



### **EPI ROADMAP**







## RISC-V accelerator vision @ EPI

#### • High throughput devices

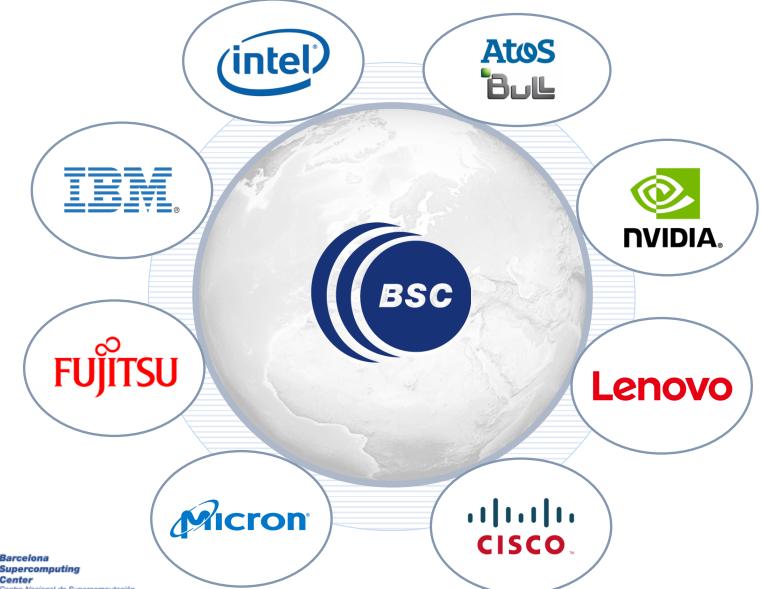
- Long Vectors (a la Cray? A la Cyber205? ...)
  - Decouple Front end Back end engines
  - Optimize memory throughput ([Command vector, 98])
  - Explicit locality management (long register file)
- ISA is important
  - Decouple/hide again hardware details, reuse SW technologies (compilers, OS,...),
  - Specific instructions?
- "limited" number of control flows
- Hierarchical Acceleration
  - Nesting
- Low power: ~ low voltage x ~ low frequency

#### • MPI+OpenMP

- Task based, throughput oriented programming approach
- Malleability in application + Dynamic resource (cores, power, BW) management
- Intelligent runtimes & Runtime Aware Architectures
  - Architectural support for the runtime

#### • Accelerator for ML

- Specialized "non Von-Neumann" compute and data motion engines (neural/stencil)
- Tuned numerical precision


### **BSC and EPI**

- EPI is a H2020 EU funded initiative restricted to the 23 original partners, selected according to EU rules
- EPI plans considering additional participants in future, provided resources will become available
- In EPI BSC is the leader of the Accelerator activities and contributor in the rest of the technical programme, including the Common Platform
- BSC will promote the EPI agenda within its vast academic network
- BSC is open to additional collaboration outside and within EPI to anyone in the world interested in producing RISC-V IP in Europe and especially in Barcelona
- Collaboration with the HPC global vendors will remain a key element of BSC strategy
- Everybody interested in RISC-V is welcome! Just come and talk to us...





### **BSC & The Global IT Industry 2018**



entro Nacional de Supercomputación

### **BSC** is Hiring

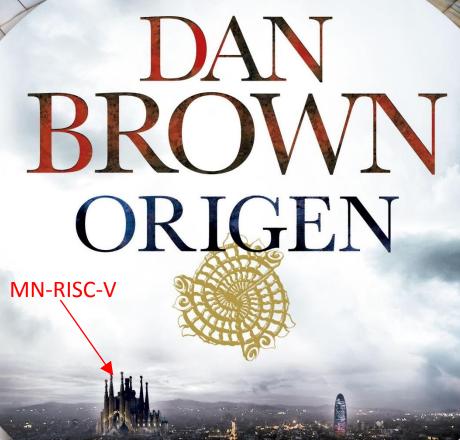


BSC is looking for talented and motivated professionals with expertise in the design and verification of IPs to be integrated into top-level HPC SoC designs. The immediate responsibilities of this group will be related to The <u>European Processor Initiative</u>.

Experienced professionals (Engineers and/or PhD holders) wanted for:

- RTL/Microarchitecture
- Verification
- FPGA Design

Find out more: <u>https://www.bsc.es/join-</u> <u>us/job-opportunities/103csrre</u> Or contact: <u>rrhh@bsc.es</u>








### Mare Nostrum RISC-V inauguration 202X

Por el autor de El código Da Vinci







Barcelona Supercomputing Center Centro Nacional de Supercomputación







Barna April 9th, 2018