
RISCV Debug Specification Tutorial

May 2018

• Debug Working Group Introduction

• Why does RISC-V need an External Debug Spec?

• Overview of the Debug Spec v. 013

• Future tasks of Debug Working Group

Outline

2
7 May 2018

• History of the current Specification

• Started out as an email list

• Task group formed August 2016

• Regular meetings

• Lots of discussion around two basic mechanisms

• Took a non-binding “opinion poll” of the member companies

• Strong desire for a unified spec

• To avoid fragmentation of RISC-V ecosystem

• Working group agreed to pursue that and see where it led

Debug Working Group Introduction

3
7 May 2018

●History of the current Specification

● Specification source is available in github:

https://github.com/riscv/riscv-debug-spec

● Pre-compiled PDFs also available in github:

https://github.com/riscv/riscv-debug-spec

Debug Working Group Introduction

4
7 May 2018

https://github.com/riscv/riscv-debug-spec
https://github.com/riscv/riscv-debug-spec
https://github.com/riscv/riscv-debug-spec
https://github.com/riscv/riscv-debug-spec
https://github.com/riscv/riscv-debug-spec
https://github.com/riscv/riscv-debug-spec
https://github.com/riscv/riscv-debug-spec
https://github.com/riscv/riscv-debug-spec
https://github.com/riscv/riscv-debug-spec
https://github.com/riscv/riscv-debug-spec

Debug Working Group Intro

• Chair

• Megan Wachs, SiFive Inc.

• Active members from:
• Many member companies

• Hardware
• Software

• Many individuals
• Many research institutions

5
7 May 2018

• Essential tool for any real hardware

• Debug embedded software on simple systems

• Debug kernel issues on more complex systems

• Perform bring up and test before SW is up and running

• NOT intended to find HW faults/bugs

• But can be used to narrow them down!

Why does RISC-V need a Debug Spec?

6
7 May 2018

• “Software is King”

• Develop HW and SW debuggers that can work for any RISC-V core

• Not dependent on the quality of a Vendor’s debugging toolchain

Goal of specification:

A debugger can connect “blind” to any RISC-V platform, and discover
everything it needs to know.

Why does RISC-V need a Debug Spec?

7
7 May 2018

• There are several features in the debug specification.
• Only a small set is mandatory
• A number are optional
• This allows for different implementations for different uses

• Don’t tax implementations with features that are not needed.

• The specification does not mandate an implementation

Many features

8
7 May 2018

• Provide visibility into system from external
hardware interface

• Access hart registers, memory, devices

• RISC-V Core and associated harts are only
part of a platform, but the Spec focuses on
the Harts.

• Share debug hardware between multiple
harts

External Debug Definition

9
7 May 2018

• Basic Features

• Selecting Harts

• Halt - Resume

• Abstract Commands

• Program Buffer

• Single - Stepping

• Debugging across reset / power down

• Triggers

Debug Spec v0.13

10
7 May 2018

Run/Halt State Machine

7 May 2018 11

• XLEN, width of an x register in bits
• Hart, a hardware thread
• WARL. Write-Any Read-Legal field

Some definitions

7 May 2018
12

• Debug logic reset behavior clearly specified

• Debugger can set dmcontrol.ndmreset

• What parts of system are reset is implementation-specific

• Debug logic is not affected by external reset

• Debugger must set dmcontrol.dmactive

• Implementations can use this indicator to prevent power gating, etc

Debugging Across Reset/Powerdown

13
7 May 2018

• “Debug” execution mode

• Waiting for instruction from debugger

• Generally acts like M-Mode

• Interrupts are disabled

• Exceptions handled by debugger

• Can be implemented with simple
pipeline stall

Requirements on RISC-V Harts

14
7 May 2018

Requirements on RISC-V Harts : CSRs

• dcsr

• Reports cause of entering debug
mode

• Configures what ‘ebreak’ does

• Controls Single-step

• Controls counters and timers
operation in debug mode

• dpc (XLEN bits, optional)

• Holds a copy of pc

• May alias to pc

• dscratch(0..N) (XLEN bits,
optional)

• Can be used by debug module/
debugger

7 May 2018
15

• 32-bit register space to control debug
functionality

• Specification focuses on this register space

• Details between Debug Module & Hart left
up to implementation

 Debug Module

16
7 May 2018

• Conceptual 32-bit bus

• Connects Debug Transport(s) to Debug
Module

• Provides a register-based interface to Debug
Module

• Abstraction: could be combined in hardware

 Debug Module Interface

17
7 May 2018

• Single debug module can support up to 2^20 harts

• Debugger writes 20-bit hart selector to dmcontrol.hartselhi
and dmcontrol.hartsello

• Hart Selector != mhartid, but easy to discover mapping

• Optional feature to allow selecting multiple harts

Selecting Harts

18
7 May 2018

To halt, debugger:

1. Selects desired hart(s)

2. Sets dmcontrol.haltreq

3. Waits for dmstatus.allhalted

4. Clears dmcontrol.haltreq

To resume, debugger:

1. Selects desired hart(s)

2. Sets dmcontrol.resumereq

3. Waits for dmstatus.allresumeack

Halt, Resume

19
7 May 2018

To halt harts 33, 37, and 5, the debugger:

1. Write 0x1 to dmcontrol.hasel // Select multiple hart control mode

2. Writes 0x1 to hawindowsel // Select second set of 32 mask bits

3. Writes 0x22 to hawindow // sets bits 1 and 5 to select harts 33 and 37

4. Writes 0x5 to dmcontrol.hartsello // select hart 5

5. Writes 0x0 to dmcontrol.hartselhi

6. Sets dmcontrol.haltreq // halt

7. Waits for dmstatus.allhalted

8. Clears dmcontrol.haltreq

Halt multiple Harts

20
7 May 2018

• Simple Abstraction for Common Operations

• Read/Write GPRs -- REQUIRED

• Read/Write CSRs -- Optional

• Read/Write FPRs -- Optional

• Can be supported on running harts -- Optional

To perform an abstract command:

1. For a write command the Debugger writes argument(s) into data registers

2. Debugger writes command register

3. Debugger waits for abstractcs.busy = 0

4. For a read command the Debugger reads results from data registers

Abstract Commands

21
7 May 2018

• Optional Extension of Abstract Command

• Allows arbitrary RISC-V Code to be executed by hart

• Flexible way to implement any desired behavior, including future extensions

To execute Program Buffer:

1. Write desired code into progbuf registers (ending with ‘ebreak’)

2. Write command register with ‘postexec’ bit set

3. Wait for abstractcs.busy = 0

Program Buffer

22
7 May 2018

• Optional Extension of Abstract Command

• Program Buffer may be addressable RAM

• Debugger can determine this by executing programs

• If it is, more flexibility (can use Program Buffer to pass more data)

• data registers may be mapped as RAM or CSRs, reported in hartinfo reg.

Program Buffer

23
7 May 2018

• Supported for Program Buffer and Abstract Commands

• Debugger can write bursts of commands without checking busy

• Check dmstatus.cmderr at the end, replay if necessary

• autoexec functionality replays commands with different data

• Low-overhead burst data transfers

Batching Commands

24
7 May 2018

• Enabled by ‘step’ bit in dcsr

• Once hart is resumed, hart executes a single instruction before
returning to debug mode

Single Stepping

25
7 May 2018

• CSRs in the core, shared with M-Mode

• Support up to 2XLEN triggers

• Trigger select, trigger type: WARL fields

• 2 types of triggers currently defined:

• Virtual address and/or data match

• Instruction count

• Debugger polls dmstatus.haltsum to
see if harts have halted

Triggers (not part of Debug Module)

26
7 May 2018

• System Bus Mastering

• Quick Access

Additional Optional Features

27
7 May 2018

• If sbcs.sbasize is > 0 then System Bus Mastering is supported
• To perform multiple 2x64 bit writes:

1. Debugger will read sbcs to check sbcs.sbasize >= 64

2. Check sbcs.sbaccess64 is set

3. Set sbcs.sbautoincrement to 1

4. Write upper 32-bits of address to sbaddress1

5. Write lower 32-bits of address to sbaddress0

6. Wait until sbcs.sbbusy is zero

7. If scbs.sbbusyerror != 0 write sbcs.sbbusyerror to clear

8. If scbs.sberror != 0 write sbcs.sberror to clear

9. Write upper 32-bits of data to sbdata1

10. Write lower 32-bits of data to sbdata0

11. Goto 6

System Bus Mastering

7 May 2018
28

• Example of setting the m bit in mcontrol to enable a hardware
breakpoint in M mode:

• Write progbuf0 transfer arg0, s0 // Save s0

• Write progbuf1 li s0, (1 << 6) // Form the mask for m bit

• Write progbuf2 csrrs x0, tdata1, s0 // Apply the mask to
mcontrol

• Write progbuf3 transfer s0, arg2 // Restore s0

• Write progbuf4 ebreak

• Write command 0x10000000 // Perform quick access

Quick Access Example

7 May 2018
29

• Debugger Software (OpenOCD)

• https://github.com/riscv/riscv-openocd

• Simulator (Spike)

• https://github.com/riscv/riscv-isa-sim

• debug-0.13 branch

• RTL (rocket-chip)

• https://github.com/ucb-bar/rocket-chip

• SiFive E31/E51 Coreplex

Some Public Implementations of Debug v0.13

30
7 May 2018

https://github.com/riscv/riscv-openocd
https://github.com/riscv/riscv-openocd
https://github.com/riscv/riscv-openocd
https://github.com/riscv/riscv-isa-sim
https://github.com/riscv/riscv-isa-sim
https://github.com/riscv/riscv-isa-sim
https://github.com/riscv/riscv-isa-sim
https://github.com/riscv/riscv-isa-sim
https://github.com/ucb-bar/rocket-chip
https://github.com/ucb-bar/rocket-chip
https://github.com/ucb-bar/rocket-chip
https://github.com/ucb-bar/rocket-chip
https://github.com/ucb-bar/rocket-chip

• Assumes JTAG DTM
• RV32 and RV64 Support
• Integrates with GDB to provide XML metadata about the target (e.g. which

CSRs exist and which do not)
• Run/Halt/Single Step Support
• Accessing GPRs, FPRs, CSRs

• With Program Buffer
• With Abstract Commands
• When hart is running or halted (if hart supports it)

Open Source Debugger SW: OpenOCD (1)

7 May 2018
31

• Efficient Memory Access
• With Program Buffer
• With System Bus Access (prefers Program Buffer by default but can be overriden

by user)
• Fast batching for large reads and writes

• Supports multi-hart targets, either in “RTOS” or as individual targets
• Allows setting Hardware breakpoints and watchpoints
• Leverages OpenOCD support for things like NOR/NAND Flash programming
• Simple RISC-V specific commands:

• Simple “compliance” commands for low level testing of adherence to spec
• More sophisticated end-to-end tests can be found in riscv-tests repository
• Low-level commands for basic DMI reads and writes, Authentication

Open Source Debugger SW: OpenOCD (2)

7 May 2018
32

• Not Yet Supported:
• Virtual address translation
• Quick Access in spec

Open Source Debugger SW: OpenOCD (3)

33
7 May 2018

• 45 day consultation has elapsed

• Task Group now going through issues raised

• Incorporating feedback from the public review period to submit to board for
ratification process

Current Focus of Debug Working Group

34
7 May 2018

• Read the spec:

• https://github.com/riscv/riscv-debug-spec

• https://www.sifive.com/documentation/risc-v/risc-v-external-debug-support/

• Join the mailing list:

• https://workspace.riscv.org

• debug@workspace.riscv.org

• Email :

• megan@sifive.com

How to Get Involved:

35
7 May 2018

http://github.com/riscv/riscv-debug-spec
http://github.com/riscv/riscv-debug-spec
http://github.com/riscv/riscv-debug-spec
http://github.com/riscv/riscv-debug-spec
http://github.com/riscv/riscv-debug-spec
https://www.sifive.com/documentation/risc-v/risc-v-external-debug-support/
https://www.sifive.com/documentation/risc-v/risc-v-external-debug-support/
https://www.sifive.com/documentation/risc-v/risc-v-external-debug-support/
https://www.sifive.com/documentation/risc-v/risc-v-external-debug-support/
https://www.sifive.com/documentation/risc-v/risc-v-external-debug-support/
https://www.sifive.com/documentation/risc-v/risc-v-external-debug-support/
https://www.sifive.com/documentation/risc-v/risc-v-external-debug-support/
https://www.sifive.com/documentation/risc-v/risc-v-external-debug-support/
https://www.sifive.com/documentation/risc-v/risc-v-external-debug-support/
https://www.sifive.com/documentation/risc-v/risc-v-external-debug-support/
https://www.sifive.com/documentation/risc-v/risc-v-external-debug-support/
https://workspace.riscv.org/
mailto:debug@workspace.riscv.org

