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Fast, Quantum-Resistant Secure Boot Solution 

3 

For RISC-V MCUs with off-chip program stores 

Demo at Poster Session: Mynewt RTOS on HiFive1 development board 

Run-time metrics 
 

MCU: SiFive FE310, 32-bit RISC-V 
CPU Clock: 256 MHz 
RTOS: Mynewt 1.3.0 

Powered by Walnut Digital Signature 
!ƭƎƻǊƛǘƘƳϰ 

ÅUp to 40X faster than ECDSA at 128-bit 
security 

Å{Ƴŀƭƭ ŦƻƻǘǇǊƛƴǘΥ Ŝŀǎƛƭȅ Ŧƛǘǎ ƛƴ C9омлΩǎ уY ōȅǘŜ 
OTP ROM 

ÅBased on Group Theoretic Cryptography 
(GTC) 

ÅGTC Leverages 
- Structured groups 
- Matrices and permutations 
- Arithmetic over finite fields 

 

Method 
Security 

Level 
Verification 

Time 

ECDSA P256 128-bit 179 ms 

ECDSA P521 256-bit (not supported) 

WalnutDSA 128-bit 6.76 ms 

WalnutDSA 256-bit 33.6 ms 



What is CGEN 



How does it work? 

( define - insn  

( name "add" )  

( comment "register add" )  

( attrs  base - isas )  

( syntax  "add ${rd},${rs1},${rs2}" )  

( format  + ( f - funct7  funct7 ) rs2 rs1  

  ( f - funct3  funct3 ) rd  ( f - opcode  opcode ))  

 

( semantics  ( set  DI rd  ( add  DI rs1 rs2 )))  

)  



Copyright © 2018 Syntacore. All trademarks, product, and brand names belong to their respective owners. 

About Syntacore  

IP company, founding member of RISC-V foundation 

 

Develops and licenses state-of-the-art RISC-V cores  

ƴInitial line is available and shipping to customers 

ƴSDKs, samples in silicon, full collateral 

ƴCore team comes from 10+ years of highly-relevant background 

ƴ2.5+ years of focused RISC-V development 

 

Full service to specialize CPU IP for customer needs 

ƴOne-stop workload-specific customization for 10x 

improvements 

Ɇwith tools/compiler support 

ƴIP hardening at the required library node 

ƴSoC integration and SW migration 



Copyright © 2018 Syntacore. All trademarks, product, and brand names belong to their respective owners. 

SCR1 overview  

Compact MCU core for deeply embedded applications 

ƴ Open source under SHL-license since May 2017 (Apache 2.0 derivative with HW 

specific) 

Unrestricted commercial use allowed 

ƴ RV32I|E[MC] ISA 

ƴ <15 kGates in basic RV32EC configuration 

ƴ 2 to 4 stages pipeline 

ƴ M-mode only 

ƴ Optional configurable IPIC: 8..32 IRQs 

ƴ Optional integrated Debug Controller 

OpenOCD based 

ƴ Verification suite 

ƴ Documentation 

ƴ Best-effort support provided 

ƴ Commercial support available 

https://github.com/syntacore/scr1 

*  Dhrystone 2.1, Coremark 1.0, GCC 7.1 BM from TCM 
** -O3 -funroll-loops -fpeel-loops -fgcse-sm -fgcse-las -flto 

Performance*,  
per MHz 

DMIPS 
- O2 1.28  

- best**  1.72  

Coremark 
- O2 2.60  

- best**  2.78  

https://github.com/syntacore/scr1


Diving into  RISC-V LLVM 

Why RISC-V LLVM 

Current status  

ǒ 

ǒ 

ǒ 

ǒ 

ǒ 

ǒ 

Approach 

Nest steps 

Supporting your  own extension  

Get involved  Alex Bradbury  
asb@lowrisc.org @asbradbury @lowrisc 
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TAG 

INITIALIZATION 

 

 

 
PROGRAM 

SECURITY EXCEPTION 

VULNERABILITY 

I/O CHANNELS 

Step 1. Each data item coming 

from potentially malicious 

channels is extended with a tag 

that marks it as spurious 

 
Step 2. During program 

execution, the RISC-V core 

performs tag propagation to 

keep track of information flows 

generated by spurious data 

 
Step 3. By tag checking, the 

RISC-V core detects if spurious 

data are used in an unsafe 

manner and generates a 

security exception 

DIFT 

DETECTION 

Securing a RISC-V Core for IoT Applications 

with Dynamic Information Flow Tracking (DIFT) 

ÅMany IoT devices are prone to 

attacks due to low-level 

programming errors (e.g. buffer 

overflow and format string 

attacks)  

 

Motivation 

ÅDesign and implementation of a 

low-overhead protection scheme 

based on DIFT to secure RISC-V 

cores for IoT applications 

 
ÅDemonstration with an 

FPGA-based prototype 

 

Contributions 

C. Palmiero, G. Di Guglielmo, L. Lavagno, and L. Carloni 



Å Design and implementation of a DIFT architecture for an optimized  

4-stage, in-order, 32-bit RISC-V core based on the PULPino platform 

Å The D-RI5CY architecture supports various software-programmable security policies; it was evaluated with 

policies for memory protection 

Å The experimental results demonstrate that securing a RISC-V core with DIFT is feasible, does not incur in any 

run-time overhead, and requires negligible resources 

Design, Implementation, and Evaluation of the  

DIFT-Enhanced RISC-V Processor Core 

C. Palmiero, G. Di Guglielmo, L. Lavagno, and L. Carloni 
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Two-Level Icache & Results 

            I$ type 

 SP MP 
Two- 

Level 

Throughput  -5% 1.00 -15%[1] 

Area 1.00 +50% +40% 

Power 

Efficiency 

-25% -50% 1.00 Comparison between throughput, area 

and power efficiency among SP, MP 

and two-level icache.  1.00 means the 

best among the three types of icache.  

 

[1]  For throughput, the value of two-

level icache is the worst case. 

 

All value in the table are the average 

value except [1] . For more details and 

data, please see the poster. 

Two-level relaxed-timing 

Instruction Cache 
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Proprietary + Confidential 

Evaluation of RISC-V for Pixel Visual Core 

Matt Cockrell (mcockrell@google.com)  

(May 9th, 2018 

1 



Overview 
Proprietary + Confidential 

ǒ Use case 

ǒ Core selection 

ǒ Integration 

2 



Background: Pixel Visual Core Proprietary + Confidential 

ñPixel Visual Core is the Google-designed 

Image Processing Unit (IPU)ða fully 
programmable, domain-specific 
processor designed from scratch to 
deliver maximum performance at low 
power.ò[1] 

Critical point: A dedicated A53 (top left) 

aggregates application layer IPU resource 
requests and configures appropriately. 

Magnified Image of Pixel Visual Core 

[1] ñPixel Visual Core: image processing and machine learning on Pixel 2ò, 

Oct 17, 2017, Ofer Shacham, Google Inc. 

3 



Pixel Visual Core today Proprietary + Confidential 

Main 

CPU 
Dedicated A-Class CPU 

runs OS and support IPU 

I/O IPU 

4 



Modern SoC - multiple accelerators Proprietary + Confidential 

Main 

CPU 
Main CPU no longer 

dedicated only to IPU 

ᵼ Local controller is desired 

Modern mobile SoC with 

multiple devices. 

X Y Z PU I/O 

Add microcontroller as job 

scheduling and dispatch unit. 

Open source IP is an 

interesting option for this 

microcontroller. 

5 



Core Selection Considerations 
Proprietary + Confidential 

Level of Effort How difficult would it be to work with and integrate. 

Risk Stability and reliability of support. 

Flexibility of use. License 

6 



Candidate 1: Bottle Rocket (https://github.com/google/bottlerocket) 
ential 

ǒ Internal Project to demonstrate ability to easily develop custom RISC-V 

implementation by leveraging Rocket Chip. 

ǒ Implements RV32IMC 

ǒ Represents evaluating Rocket Chip as an option. 

7 

https://github.com/google/bottlerocket
https://github.com/google/bottlerocket


Candidate 2: Merlin ( https://github.com/origintfj/riscv) 
Proprietary + Confidential 

ǒ Core provided from a hobbyists developed 

compatible with ñQFlowò 

ǒ Implements RV32IC 

ǒ The hobbyist was a team member, use of this core 

would become a ñbuild from scratchò candidate. 

8 

https://github.com/origintfj/riscv
https://github.com/origintfj/riscv
https://github.com/origintfj/riscv
https://github.com/origintfj/riscv


Candidate 3: RI5CY (RISK-EE) (https://github.com/pulp-platform/riscv) 
onfidential 

ǒ Provided from the PULP team 

ǒ Implements RV32IMC with added extensions 

ǒ This candidate comes from and is maintained by academia 

9 

https://github.com/pulp-platform/riscv
https://github.com/pulp-platform/riscv
https://github.com/pulp-platform/riscv
https://github.com/pulp-platform/riscv
https://github.com/pulp-platform/riscv
https://github.com/pulp-platform/riscv
https://github.com/pulp-platform/riscv
https://github.com/pulp-platform/riscv


Proprietary + Confidential 

Open core comparison 

Core Level of Effort Risk License 

Bottle Rocket 

High 

Low 

Low 

Med ᾜ 

Merlin 

RI5CY 

High 

Med 

ᾜ 

ᾜ 

10 



Recommended Candidate Proprietary + Confidential 

Selected RI5CY from PULP: 
ǒ 

ǒ 

ǒ 

ǒ 

Had been taped-out 

Provided infrastructure 

Solderpad license 

It was implemented in SystemVerilog (instead of Chisel): 

ƺ 

ƺ 

ƺ 

SystemVerilog builds on established physical design and verification flows 

Chisel generated Verilog loses designerôs intent making it difficult to read and debug 

Chisel generated code makes certain physical design items difficult such as sync/async 

clocks, power domains, clock domains, etc. 

11 



Integration of RI5CY Proprietary + Confidential 

The Bad: The Ugly (Scary): The Good: 

ǒ 
ǒ 

ǒ 

ǒ 

Numerous lint errors 

Ad hoc verified 

Bugs found: 

ǒ 

ǒ 
Version control 

Bugs found in: 
RTL provided in 

SystemVerilog 

ETH/PULP Team 

Debug capability 

Able to work with Valtrix to 

verify 

ƺ 

ƺ 
Multiplier 

LSU 
ǒ 

ǒ 

ǒ 

ƺ 

ƺ 

ƺ 

PULPino Compiler 

Documentation 

Extensions 
ǒ Debug setup requires 

PULPino specific utilities. 
ǒ Documentation 

12 



Recap and next steps 
Proprietary + Confidential 

Where we have been: 
‎ Describe possible PVC configuration mechanism 

‎ Continued evaluation of RI5CY 
‎ Shared experience of integrating open source IP 

Where we are going: 
‎ Add full compliance for privilege/debug specification. 

‎ Evaluate performance impact after adding RI5CY to PVC 

13 



Heterogeneous systems incorporating custom HDL designs usually rely on mock systems 
Áadditional effort required 
Ásimulated data/scenarios 
Áno visibility on HW-SW interactions 

TCCF: Tightly-Coupled Co-simulation Framework for RISC-V Based Systems 
X. Ruppen, R. Rigamonti, A. Dassatti 

Vfull visibility on internals during real interactions 
Vhost software and HDL unmodified 

TCCF: QEMU/Modelsim-based co-simulation framework 


