
Poster/Demo Sessions Slides

From RISC-V Workshop in Barcelona

7-10 May, 2018

Table of Contents for Poster/Demo Sessions Slides
Å Derek Atkins, Slide 3
Å Mary Bennett, Slides 4 ς 5
Å Ekaterina Berezina and Andrey Smolyarov,

Slides 6 ς 7
Å Alex Bradbury, Slide 8
Å Luca Carloni and Christian Palmiero, Slides 9 -

10
Å Jie Chen, Slides 11 ς 13
Å Matt Cockrell, Slides 14-26
Å Alberto Dassatti, Slides 27 ς 28
Å Christian Fabre, Slides 29 ς 30
Å Juan Fumero, Slides 31 ς 32
Å Nicolas Gaude and Hai Yu, Slides 33 ς 36
Å Chris Jones and Zdenek Prikryl, Slides 37 ς 38
Å Felix Kaiser, Slides 39 ς 40
Å Alexander Kamkin and Andrei Tatarnikov, Slides

41 ς 42
Å Luke Leighton, Slide 43
Å Heng Lin, Slides 44 ς 45
Å Maja Malenko, Slide 46

Å Eric Matthews and Lesley Shannon, Slides 47 ς 48
Å Paulo Matos, Slides 49 ς 50
Å Lucas Morais, Slides 51 ς 52
Å Mauro Olivieri, Slides 53 ς 54
Å Aleksandar Pajkanovic, Slides 55 ς 56
Å Matheus Ogleari, Slides 57 ς 75
Å Shubhodeep Roy, Slides 76 ς 78
Å Boris Shingarov, Slides 79 ς 80
Å Christoph Schulz, Slides 81 ς 82
Å Wei Song, Rui Hou and Dan Meng, Slides 83 ς 84
Å Greg Sullivan, Slides 85 ς 86
Å Robert Trout, Slide 87
Å Vasily Varaksin and Ekaterina Berezina, Slides 88 ς 89
Å Danny Ybarra, Slides 90 ς 97

Fast, Quantum-Resistant Secure Boot Solution

3

For RISC-V MCUs with off-chip program stores

Demo at Poster Session: Mynewt RTOS on HiFive1 development board

Run-time metrics

MCU: SiFive FE310, 32-bit RISC-V
CPU Clock: 256 MHz
RTOS: Mynewt 1.3.0

Powered by Walnut Digital Signature
!ƭƎƻǊƛǘƘƳϰ

ÅUp to 40X faster than ECDSA at 128-bit
security

Å{Ƴŀƭƭ ŦƻƻǘǇǊƛƴǘΥ Ŝŀǎƛƭȅ Ŧƛǘǎ ƛƴ C9омлΩǎ уY ōȅǘŜ
OTP ROM

ÅBased on Group Theoretic Cryptography
(GTC)

ÅGTC Leverages
- Structured groups
- Matrices and permutations
- Arithmetic over finite fields

Method
Security

Level
Verification

Time

ECDSA P256 128-bit 179 ms

ECDSA P521 256-bit (not supported)

WalnutDSA 128-bit 6.76 ms

WalnutDSA 256-bit 33.6 ms

What is CGEN

How does it work?

(define - insn

(name "add")

(comment "register add")

(attrs base - isas)

(syntax "add ${rd},${rs1},${rs2}")

(format + (f - funct7 funct7) rs2 rs1

 (f - funct3 funct3) rd (f - opcode opcode))

(semantics (set DI rd (add DI rs1 rs2)))

)

Copyright © 2018 Syntacore. All trademarks, product, and brand names belong to their respective owners.

About Syntacore

IP company, founding member of RISC-V foundation

Develops and licenses state-of-the-art RISC-V cores

ƴInitial line is available and shipping to customers

ƴSDKs, samples in silicon, full collateral

ƴCore team comes from 10+ years of highly-relevant background

ƴ2.5+ years of focused RISC-V development

Full service to specialize CPU IP for customer needs

ƴOne-stop workload-specific customization for 10x

improvements

Ɇwith tools/compiler support

ƴIP hardening at the required library node

ƴSoC integration and SW migration

Copyright © 2018 Syntacore. All trademarks, product, and brand names belong to their respective owners.

SCR1 overview

Compact MCU core for deeply embedded applications

ƴ Open source under SHL-license since May 2017 (Apache 2.0 derivative with HW

specific)

Unrestricted commercial use allowed

ƴ RV32I|E[MC] ISA

ƴ <15 kGates in basic RV32EC configuration

ƴ 2 to 4 stages pipeline

ƴ M-mode only

ƴ Optional configurable IPIC: 8..32 IRQs

ƴ Optional integrated Debug Controller

OpenOCD based

ƴ Verification suite

ƴ Documentation

ƴ Best-effort support provided

ƴ Commercial support available

https://github.com/syntacore/scr1

* Dhrystone 2.1, Coremark 1.0, GCC 7.1 BM from TCM
** -O3 -funroll-loops -fpeel-loops -fgcse-sm -fgcse-las -flto

Performance*,
per MHz

DMIPS
- O2 1.28

- best** 1.72

Coremark
- O2 2.60

- best** 2.78

https://github.com/syntacore/scr1

Diving into RISC-V LLVM

Why RISC-V LLVM

Current status

ǒ

ǒ

ǒ

ǒ

ǒ

ǒ

Approach

Nest steps

Supporting your own extension

Get involved Alex Bradbury
asb@lowrisc.org @asbradbury @lowrisc

9

TAG

INITIALIZATION

PROGRAM

SECURITY EXCEPTION

VULNERABILITY

I/O CHANNELS

Step 1. Each data item coming

from potentially malicious

channels is extended with a tag

that marks it as spurious

Step 2. During program

execution, the RISC-V core

performs tag propagation to

keep track of information flows

generated by spurious data

Step 3. By tag checking, the

RISC-V core detects if spurious

data are used in an unsafe

manner and generates a

security exception

DIFT

DETECTION

Securing a RISC-V Core for IoT Applications

with Dynamic Information Flow Tracking (DIFT)

ÅMany IoT devices are prone to

attacks due to low-level

programming errors (e.g. buffer

overflow and format string

attacks)

Motivation

ÅDesign and implementation of a

low-overhead protection scheme

based on DIFT to secure RISC-V

cores for IoT applications

ÅDemonstration with an

FPGA-based prototype

Contributions

C. Palmiero, G. Di Guglielmo, L. Lavagno, and L. Carloni

Å Design and implementation of a DIFT architecture for an optimized

4-stage, in-order, 32-bit RISC-V core based on the PULPino platform

Å The D-RI5CY architecture supports various software-programmable security policies; it was evaluated with

policies for memory protection

Å The experimental results demonstrate that securing a RISC-V core with DIFT is feasible, does not incur in any

run-time overhead, and requires negligible resources

Design, Implementation, and Evaluation of the

DIFT-Enhanced RISC-V Processor Core

C. Palmiero, G. Di Guglielmo, L. Lavagno, and L. Carloni

IF
ID

ID
EX

EX
WB

Data
Memory

Decoder
ALU

Load
Store
Unit

MULT
DIV
FPU

PC T

Register File T

T

Tag
Propagation

Logic

Tag
Check
Logic

Tag
Update
Logic

Instruction
Memory

Instruction
Cache

Tag
Check
Logic CSR

TPR

TCR

D-RI5CY

off-chip

off-chip

1

Cache

Controlle

r

128bit cache

line

DATA

(Way 1)

SCM Dual

Port

Write DATA

Read DATA

TAG

(Way

1)

SCM

Dual

Port

Write

TAG

Read TAG

112

8

64

I$

BANK

Bank

#1

Bank

#16 . . .

Prefetch

interface

Bank

#2

TCDM

Low latency

Logarithmic interconnect

DMA

C
lu

s
te

r
B

u
s
 (

A
X

I4
)

DEMU

X

P
e
ri

p
h

e
ra

l

in
te

rc
o

n
n

e
c
t

Dual

Clock

FIFOs

Cluster Domain

(Cluster CLK, Cluster VDD)

Private

Instruction Cache

...

RI5CY

#8

DEMU

X

RI5CY

#1

é

...

Instruction Bus (AXI4)

Prefetch

interface

L0 Buffer

(128bits)

é

...

L0 Buffer

(128bits) 128 128

64

64 64

I$

#1

I$

#8

Single-Ported Shared

Instruction Cache

Prefetch

interface

RI5CY

#8

RI5CY

#1

Prefetch

interface

L0 Buffer

(128bits)

L0 Buffer

(128bits)

share

dI$

#1

Instruction Bus (AXI4)

é

...
64

128 128

64 64

é

...

é

...

Read-Only Logarithmic

interconnect 8 x 8

share

dI$

#8

128 128

é

...

Ultra Low Power Cluster I$ exploration with RI5CY

Multi-Port Shared

Instruction Cache

Prefetch

interface

RI5CY

#8

RI5CY

#1

Prefetch

interface

L0 Buffer

(128bits)

L0 Buffer

(128bits) 128 128

Instruction Bus (AXI4)

64

é

...

é

...

Cache

Controller

Cache

Controller

DATA

&

TAG

Read-Only Logarithmic

interconnect 8 x 1

128

128 é

...

é

... Master

Cache

Controll

er
64

DATA

&

TAG

128

é é

2

Two-Level Icache & Results

 I$ type

 SP MP
Two-

Level

Throughput -5% 1.00 -15%[1]

Area 1.00 +50% +40%

Power

Efficiency

-25% -50% 1.00 Comparison between throughput, area

and power efficiency among SP, MP

and two-level icache. 1.00 means the

best among the three types of icache.

[1] For throughput, the value of two-

level icache is the worst case.

All value in the table are the average

value except [1] . For more details and

data, please see the poster.

Two-level relaxed-timing

Instruction Cache

Prefetch

interface

RI5CY

#8

RI5CY

#1

Prefetch

interface

L0 Buffer

(128bits)

L0

Buffer

(128bits

)
I$

#1

128 128

I$

#8

128

é

...
L1

é

...

share

dI$

#1

Instruction Bus (AXI4)

64

64 64

Read-Only Logarithmic

interconnect 8 x 8

share

dI$

#8

128 128
L1.5

é

...

128

é

...

Characteristics

3

REFERENCES

[1] I. Loi, A. Capotondi, D. Rossi, A. Marongiu and L. Benini, "The Quest for Energy-Efficient I$ Design in Ultra-Low-Power

Clustered Many-Cores," in IEEE Transactions on Multi-Scale Computing Systems, vol. PP, no. 99, pp. 1-1.

[2] L. Benini, E. Flamand, D. Fuin, and D. Melpignano, ñP2012: Building an ecosystem for a scalable, modular and high-efficiency

embedded computing accelerator,ò in 2012 Design, Automation Test in Europe Conference Exhibition (DATE), March 2012, pp.

983ï987.

[3] A. Teman, D. Rossi, P. Meinerzhagen, L. Benini, and A. Burg, ñPower, Area, and Performance Optimization of Standard Cell

Memory Arrays Through Controlled Placement,ò ACM Trans. Des. Autom. Electron. Syst., vol. 21, no. 4, pp. 59:1ï59:25, May 2016.

[Online]. Available: http://doi.acm.org/10.1145/2890498

Proprietary + Confidential

Evaluation of RISC-V for Pixel Visual Core

Matt Cockrell (mcockrell@google.com)

(May 9th, 2018

1

Overview
Proprietary + Confidential

ǒ Use case

ǒ Core selection

ǒ Integration

2

Background: Pixel Visual Core Proprietary + Confidential

ñPixel Visual Core is the Google-designed

Image Processing Unit (IPU)ða fully
programmable, domain-specific
processor designed from scratch to
deliver maximum performance at low
power.ò[1]

Critical point: A dedicated A53 (top left)

aggregates application layer IPU resource
requests and configures appropriately.

Magnified Image of Pixel Visual Core

[1] ñPixel Visual Core: image processing and machine learning on Pixel 2ò,

Oct 17, 2017, Ofer Shacham, Google Inc.

3

Pixel Visual Core today Proprietary + Confidential

Main

CPU
Dedicated A-Class CPU

runs OS and support IPU

I/O IPU

4

Modern SoC - multiple accelerators Proprietary + Confidential

Main

CPU
Main CPU no longer

dedicated only to IPU

ᵼ Local controller is desired

Modern mobile SoC with

multiple devices.

X Y Z PU I/O

Add microcontroller as job

scheduling and dispatch unit.

Open source IP is an

interesting option for this

microcontroller.

5

Core Selection Considerations
Proprietary + Confidential

Level of Effort How difficult would it be to work with and integrate.

Risk Stability and reliability of support.

Flexibility of use. License

6

Candidate 1: Bottle Rocket (https://github.com/google/bottlerocket)
ential

ǒ Internal Project to demonstrate ability to easily develop custom RISC-V

implementation by leveraging Rocket Chip.

ǒ Implements RV32IMC

ǒ Represents evaluating Rocket Chip as an option.

7

https://github.com/google/bottlerocket
https://github.com/google/bottlerocket

Candidate 2: Merlin (https://github.com/origintfj/riscv)
Proprietary + Confidential

ǒ Core provided from a hobbyists developed

compatible with ñQFlowò

ǒ Implements RV32IC

ǒ The hobbyist was a team member, use of this core

would become a ñbuild from scratchò candidate.

8

https://github.com/origintfj/riscv
https://github.com/origintfj/riscv
https://github.com/origintfj/riscv
https://github.com/origintfj/riscv

Candidate 3: RI5CY (RISK-EE) (https://github.com/pulp-platform/riscv)
onfidential

ǒ Provided from the PULP team

ǒ Implements RV32IMC with added extensions

ǒ This candidate comes from and is maintained by academia

9

https://github.com/pulp-platform/riscv
https://github.com/pulp-platform/riscv
https://github.com/pulp-platform/riscv
https://github.com/pulp-platform/riscv
https://github.com/pulp-platform/riscv
https://github.com/pulp-platform/riscv
https://github.com/pulp-platform/riscv
https://github.com/pulp-platform/riscv

Proprietary + Confidential

Open core comparison

Core Level of Effort Risk License

Bottle Rocket

High

Low

Low

Med ᾜ

Merlin

RI5CY

High

Med

ᾜ

ᾜ

10

Recommended Candidate Proprietary + Confidential

Selected RI5CY from PULP:
ǒ

ǒ

ǒ

ǒ

Had been taped-out

Provided infrastructure

Solderpad license

It was implemented in SystemVerilog (instead of Chisel):

ƺ

ƺ

ƺ

SystemVerilog builds on established physical design and verification flows

Chisel generated Verilog loses designerôs intent making it difficult to read and debug

Chisel generated code makes certain physical design items difficult such as sync/async

clocks, power domains, clock domains, etc.

11

Integration of RI5CY Proprietary + Confidential

The Bad: The Ugly (Scary): The Good:

ǒ
ǒ

ǒ

ǒ

Numerous lint errors

Ad hoc verified

Bugs found:

ǒ

ǒ
Version control

Bugs found in:
RTL provided in

SystemVerilog

ETH/PULP Team

Debug capability

Able to work with Valtrix to

verify

ƺ

ƺ
Multiplier

LSU
ǒ

ǒ

ǒ

ƺ

ƺ

ƺ

PULPino Compiler

Documentation

Extensions
ǒ Debug setup requires

PULPino specific utilities.
ǒ Documentation

12

Recap and next steps
Proprietary + Confidential

Where we have been:
‎ Describe possible PVC configuration mechanism

‎ Continued evaluation of RI5CY
‎ Shared experience of integrating open source IP

Where we are going:
‎ Add full compliance for privilege/debug specification.

‎ Evaluate performance impact after adding RI5CY to PVC

13

Heterogeneous systems incorporating custom HDL designs usually rely on mock systems
Áadditional effort required
Ásimulated data/scenarios
Áno visibility on HW-SW interactions

TCCF: Tightly-Coupled Co-simulation Framework for RISC-V Based Systems
X. Ruppen, R. Rigamonti, A. Dassatti

Vfull visibility on internals during real interactions
Vhost software and HDL unmodified

TCCF: QEMU/Modelsim-based co-simulation framework

