
Poster/Demo Sessions Slides

From RISC-V Workshop in Barcelona

7-10 May, 2018

Table of Contents for Poster/Demo Sessions Slides
• Derek Atkins, Slide 3
• Mary Bennett, Slides 4 – 5
• Ekaterina Berezina and Andrey Smolyarov,

Slides 6 – 7
• Alex Bradbury, Slide 8
• Luca Carloni and Christian Palmiero, Slides 9 -

10
• Jie Chen, Slides 11 – 13
• Matt Cockrell, Slides 14-26
• Alberto Dassatti, Slides 27 – 28
• Christian Fabre, Slides 29 – 30
• Juan Fumero, Slides 31 – 32
• Nicolas Gaude and Hai Yu, Slides 33 – 36
• Chris Jones and Zdenek Prikryl, Slides 37 – 38
• Felix Kaiser, Slides 39 – 40
• Alexander Kamkin and Andrei Tatarnikov, Slides

41 – 42
• Luke Leighton, Slide 43
• Heng Lin, Slides 44 – 45
• Maja Malenko, Slide 46

• Eric Matthews and Lesley Shannon, Slides 47 – 48
• Paulo Matos, Slides 49 – 50
• Lucas Morais, Slides 51 – 52
• Mauro Olivieri, Slides 53 – 54
• Aleksandar Pajkanovic, Slides 55 – 56
• Matheus Ogleari, Slides 57 – 75
• Shubhodeep Roy, Slides 76 – 78
• Boris Shingarov, Slides 79 – 80
• Christoph Schulz, Slides 81 – 82
• Wei Song, Rui Hou and Dan Meng, Slides 83 – 84
• Greg Sullivan, Slides 85 – 86
• Robert Trout, Slide 87
• Vasily Varaksin and Ekaterina Berezina, Slides 88 – 89
• Danny Ybarra, Slides 90 – 97

Fast, Quantum-Resistant Secure Boot Solution

3

For RISC-V MCUs with off-chip program stores

Demo at Poster Session: Mynewt RTOS on HiFive1 development board

Run-time metrics

MCU: SiFive FE310, 32-bit RISC-V
CPU Clock: 256 MHz
RTOS: Mynewt 1.3.0

Powered by Walnut Digital Signature
Algorithm™

• Up to 40X faster than ECDSA at 128-bit
security

• Small footprint: easily fits in FE310’s 8K byte
OTP ROM

• Based on Group Theoretic Cryptography
(GTC)

• GTC Leverages
- Structured groups
- Matrices and permutations
- Arithmetic over finite fields

Method
Security

Level
Verification

Time

ECDSA P256 128-bit 179 ms

ECDSA P521 256-bit (not supported)

WalnutDSA 128-bit 6.76 ms

WalnutDSA 256-bit 33.6 ms

What is CGEN

How does it work?

(define-insn

(name "add")

(comment "register add")

(attrs base-isas)

(syntax "add ${rd},${rs1},${rs2}")

(format + (f-funct7 funct7) rs2 rs1

 (f-funct3 funct3) rd (f-opcode opcode))

(semantics (set DI rd (add DI rs1 rs2)))

)

Copyright © 2018 Syntacore. All trademarks, product, and brand names belong to their respective owners.

About Syntacore

IP company, founding member of RISC-V foundation

Develops and licenses state-of-the-art RISC-V cores

■ Initial line is available and shipping to customers

■SDKs, samples in silicon, full collateral

■Core team comes from 10+ years of highly-relevant background

■2.5+ years of focused RISC-V development

Full service to specialize CPU IP for customer needs

■ One-stop workload-specific customization for 10x

improvements

• with tools/compiler support

■ IP hardening at the required library node

■ SoC integration and SW migration

Copyright © 2018 Syntacore. All trademarks, product, and brand names belong to their respective owners.

SCR1 overview

Compact MCU core for deeply embedded applications

■ Open source under SHL-license since May 2017 (Apache 2.0 derivative with HW

specific)

◻ Unrestricted commercial use allowed

■ RV32I|E[MC] ISA

■ <15 kGates in basic RV32EC configuration

■ 2 to 4 stages pipeline

■ M-mode only

■ Optional configurable IPIC: 8..32 IRQs

■ Optional integrated Debug Controller

◻ OpenOCD based

■ Verification suite

■ Documentation

■ Best-effort support provided

■ Commercial support available

https://github.com/syntacore/scr1

* Dhrystone 2.1, Coremark 1.0, GCC 7.1 BM from TCM
** -O3 -funroll-loops -fpeel-loops -fgcse-sm -fgcse-las -flto

Performance*,
per MHz

DMIPS
-O2 1.28

-best** 1.72

Coremark
-O2 2.60

-best** 2.78

https://github.com/syntacore/scr1

Diving into RISC-V LLVM

Why RISC-V LLVM

Current status

●

●

●

●

●

●

Approach

Nest steps

Supporting your own extension

Get involved Alex Bradbury
asb@lowrisc.org @asbradbury @lowrisc

9

TAG

INITIALIZATION

PROGRAM

SECURITY EXCEPTION

VULNERABILITY

I/O CHANNELS

Step 1. Each data item coming

from potentially malicious

channels is extended with a tag

that marks it as spurious

Step 2. During program

execution, the RISC-V core

performs tag propagation to

keep track of information flows

generated by spurious data

Step 3. By tag checking, the

RISC-V core detects if spurious

data are used in an unsafe

manner and generates a

security exception

DIFT

DETECTION

Securing a RISC-V Core for IoT Applications

with Dynamic Information Flow Tracking (DIFT)

• Many IoT devices are prone to

attacks due to low-level

programming errors (e.g. buffer

overflow and format string

attacks)

Motivation

• Design and implementation of a

low-overhead protection scheme

based on DIFT to secure RISC-V

cores for IoT applications

• Demonstration with an

FPGA-based prototype

Contributions

C. Palmiero, G. Di Guglielmo, L. Lavagno, and L. Carloni

• Design and implementation of a DIFT architecture for an optimized

4-stage, in-order, 32-bit RISC-V core based on the PULPino platform

• The D-RI5CY architecture supports various software-programmable security policies; it was evaluated with

policies for memory protection

• The experimental results demonstrate that securing a RISC-V core with DIFT is feasible, does not incur in any

run-time overhead, and requires negligible resources

Design, Implementation, and Evaluation of the

DIFT-Enhanced RISC-V Processor Core

C. Palmiero, G. Di Guglielmo, L. Lavagno, and L. Carloni

IF
ID

ID
EX

EX
WB

Data
Memory

Decoder
ALU

Load
Store
Unit

MULT
DIV
FPU

PC T

Register File T

T

Tag
Propagation

Logic

Tag
Check
Logic

Tag
Update

Logic

Instruction
Memory

Instruction
Cache

Tag
Check
Logic CSR

TPR

TCR

D-RI5CY

off-chip

off-chip

1

Cache

Controlle

r

128bit cache

line

DATA

(Way 1)

SCM Dual

Port

Write DATA

Read DATA

TAG

(Way

1)

SCM

Dual

Port

Write

TAG

Read TAG

112

8

64

I$

BANK

Bank

#1

Bank

#16 . . .

Prefetch

interface

Bank

#2

TCDM

Low latency

Logarithmic interconnect

DMA

C
lu

s
te

r
B

u
s
 (

A
X

I4
)

DEMU

X

P
e
ri

p
h

e
ra

l

in
te

rc
o

n
n

e
c
t

Dual

Clock

FIFOs

Cluster Domain

(Cluster CLK, Cluster VDD)

Private

Instruction Cache

...

RI5CY

#8

DEMU

X

RI5CY

#1

…

...

Instruction Bus (AXI4)

Prefetch

interface

L0 Buffer

(128bits)

…

...

L0 Buffer

(128bits) 128 128

64

64 64

I$

#1

I$

#8

Single-Ported Shared

Instruction Cache

Prefetch

interface

RI5CY

#8

RI5CY

#1

Prefetch

interface

L0 Buffer

(128bits)

L0 Buffer

(128bits)

share

dI$

#1

Instruction Bus (AXI4)

…

...
64

128 128

64 64

…

...

…

...

Read-Only Logarithmic

interconnect 8 x 8

share

dI$

#8

128 128

…

...

Ultra Low Power Cluster I$ exploration with RI5CY

Multi-Port Shared

Instruction Cache

Prefetch

interface

RI5CY

#8

RI5CY

#1

Prefetch

interface

L0 Buffer

(128bits)

L0 Buffer

(128bits) 128 128

Instruction Bus (AXI4)

64

…

...

…

...

Cache

Controller

Cache

Controller

DATA

&

TAG

Read-Only Logarithmic

interconnect 8 x 1

128

128 …

...

…

... Master

Cache

Controll

er
64

DATA

&

TAG

128

… …

2

Two-Level Icache & Results

 I$ type

 SP MP
Two-

Level

Throughput -5% 1.00 -15%[1]

Area 1.00 +50% +40%

Power

Efficiency

-25% -50% 1.00 Comparison between throughput, area

and power efficiency among SP, MP

and two-level icache. 1.00 means the

best among the three types of icache.

[1] For throughput, the value of two-

level icache is the worst case.

All value in the table are the average

value except [1] . For more details and

data, please see the poster.

Two-level relaxed-timing

Instruction Cache

Prefetch

interface

RI5CY

#8

RI5CY

#1

Prefetch

interface

L0 Buffer

(128bits)

L0

Buffer

(128bits

)
I$

#1

128 128

I$

#8

128

…

...
L1

…

...

share

dI$

#1

Instruction Bus (AXI4)

64

64 64

Read-Only Logarithmic

interconnect 8 x 8

share

dI$

#8

128 128
L1.5

…

...

128

…

...

Characteristics

3

REFERENCES

[1] I. Loi, A. Capotondi, D. Rossi, A. Marongiu and L. Benini, "The Quest for Energy-Efficient I$ Design in Ultra-Low-Power

Clustered Many-Cores," in IEEE Transactions on Multi-Scale Computing Systems, vol. PP, no. 99, pp. 1-1.

[2] L. Benini, E. Flamand, D. Fuin, and D. Melpignano, “P2012: Building an ecosystem for a scalable, modular and high-efficiency

embedded computing accelerator,” in 2012 Design, Automation Test in Europe Conference Exhibition (DATE), March 2012, pp.

983–987.

[3] A. Teman, D. Rossi, P. Meinerzhagen, L. Benini, and A. Burg, “Power, Area, and Performance Optimization of Standard Cell

Memory Arrays Through Controlled Placement,” ACM Trans. Des. Autom. Electron. Syst., vol. 21, no. 4, pp. 59:1–59:25, May 2016.

[Online]. Available: http://doi.acm.org/10.1145/2890498

Proprietary + Confidential

Evaluation of RISC-V for Pixel Visual Core

Matt Cockrell (mcockrell@google.com)

(May 9th, 2018

1

Overview
Proprietary + Confidential

● Use case

● Core selection

● Integration

2

Background: Pixel Visual Core Proprietary + Confidential

“Pixel Visual Core is the Google-designed

Image Processing Unit (IPU)—a fully
programmable, domain-specific
processor designed from scratch to
deliver maximum performance at low
power.”[1]

Critical point: A dedicated A53 (top left)

aggregates application layer IPU resource
requests and configures appropriately.

Magnified Image of Pixel Visual Core

[1] “Pixel Visual Core: image processing and machine learning on Pixel 2”,

Oct 17, 2017, Ofer Shacham, Google Inc.

3

Pixel Visual Core today Proprietary + Confidential

Main

CPU
Dedicated A-Class CPU

runs OS and support IPU

I/O IPU

4

Modern SoC - multiple accelerators Proprietary + Confidential

Main

CPU
Main CPU no longer

dedicated only to IPU

⇒ Local controller is desired

Modern mobile SoC with

multiple devices.

X Y Z PU I/O

Add microcontroller as job

scheduling and dispatch unit.

Open source IP is an

interesting option for this

microcontroller.

5

Core Selection Considerations
Proprietary + Confidential

Level of Effort How difficult would it be to work with and integrate.

Risk Stability and reliability of support.

Flexibility of use. License

6

Candidate 1: Bottle Rocket (https://github.com/google/bottlerocket)
ential

● Internal Project to demonstrate ability to easily develop custom RISC-V

implementation by leveraging Rocket Chip.

● Implements RV32IMC

● Represents evaluating Rocket Chip as an option.

7

https://github.com/google/bottlerocket
https://github.com/google/bottlerocket

Candidate 2: Merlin (https://github.com/origintfj/riscv)
Proprietary + Confidential

● Core provided from a hobbyists developed

compatible with “QFlow”

● Implements RV32IC

● The hobbyist was a team member, use of this core

would become a “build from scratch” candidate.

8

https://github.com/origintfj/riscv
https://github.com/origintfj/riscv
https://github.com/origintfj/riscv
https://github.com/origintfj/riscv

Candidate 3: RI5CY (RISK-EE) (https://github.com/pulp-platform/riscv)
onfidential

● Provided from the PULP team

● Implements RV32IMC with added extensions

● This candidate comes from and is maintained by academia

9

https://github.com/pulp-platform/riscv
https://github.com/pulp-platform/riscv
https://github.com/pulp-platform/riscv
https://github.com/pulp-platform/riscv
https://github.com/pulp-platform/riscv
https://github.com/pulp-platform/riscv
https://github.com/pulp-platform/riscv
https://github.com/pulp-platform/riscv

Proprietary + Confidential

Open core comparison

Core Level of Effort Risk License

Bottle Rocket

High

Low

Low

Med ✔

Merlin

RI5CY

High

Med

✔

✔

10

Recommended Candidate Proprietary + Confidential

Selected RI5CY from PULP:
●

●

●

●

Had been taped-out

Provided infrastructure

Solderpad license

It was implemented in SystemVerilog (instead of Chisel):

○

○

○

SystemVerilog builds on established physical design and verification flows

Chisel generated Verilog loses designer’s intent making it difficult to read and debug

Chisel generated code makes certain physical design items difficult such as sync/async

clocks, power domains, clock domains, etc.

11

Integration of RI5CY Proprietary + Confidential

The Bad: The Ugly (Scary): The Good:

●
●

●

●

Numerous lint errors

Ad hoc verified

Bugs found:

●

●
Version control

Bugs found in:
RTL provided in

SystemVerilog

ETH/PULP Team

Debug capability

Able to work with Valtrix to

verify

○

○
Multiplier

LSU
●

●

●

○

○

○

PULPino Compiler

Documentation

Extensions
● Debug setup requires

PULPino specific utilities.
● Documentation

12

Recap and next steps
Proprietary + Confidential

Where we have been:
➔ Describe possible PVC configuration mechanism

➔ Continued evaluation of RI5CY
➔ Shared experience of integrating open source IP

Where we are going:
➔ Add full compliance for privilege/debug specification.

➔ Evaluate performance impact after adding RI5CY to PVC

13

Heterogeneous systems incorporating custom HDL designs usually rely on mock systems
 additional effort required
 simulated data/scenarios
 no visibility on HW-SW interactions

TCCF: Tightly-Coupled Co-simulation Framework for RISC-V Based Systems
X. Ruppen, R. Rigamonti, A. Dassatti

 full visibility on internals during real interactions
 host software and HDL unmodified

TCCF: QEMU/Modelsim-based co-simulation framework

TCCF: Tightly-Coupled Co-simulation Framework for RISC-V Based Systems
X. Ruppen, R. Rigamonti, A. Dassatti

Example:

Adding support for a new HDL design:

≈ 15 minutes of work!

Bus Functional Models from UVVM
• AXI4-Lite
• AXI Stream
• Avalon MM
• I2C
• …

Freely available on GitLab!

https://gitlab.com/reds-public/tccf

| 29

• Motivation

• Approximate Computing (AC) exploits error resiliency of applications.

• There is currently no support for AC in RISC-V processors

• Proposal

• ApproxRISC, an infrastructure for AC in RISC processors, made of

• ISA Extension: 12 instructions, global state for approximate bit width

• Simulator with plugable models for approximate operators

• LLVM version 3.9 and GNU Binutils

• ISA Extension

• Set of integer-type instructions for approximate operations.

• Register/register, register/immediate

• Change accuracy bit width

• Operations supported: Addition, subtraction, multiplication and division.

MOTIVATION AND PROPOSAL

Acknownledgements

This work was partially supported by the

French Agence Nationale de la Recherche

(ANR), under Grant Agreement, ANR-15-

CE25-0015, Project ARTEFACT

RISC-V Workshop Barcelona | Christian Fabre | 08/05/2018

ApproxRISC - An Approximate Computing Infrastructure for RISC-V

Tiago Trevisan Jost, Geneviève Ndour, Damien Couroussé, Anca Molnos, Christian

Fabre (Speaker)

E-mail: tiago.trevisanjost@cea.fr

| 30

SOLUTION AND EXPERIMENTS

Original RISC-V

Infrastructure [1]

Approximate

Computing

ApproxRISC

RISC-V Workshop Barcelona | Christian Fabre | 08/05/2018

Pragmas for AC

LLVM

#define ABW 7

#define WIDTH 32

#define FRAC 10

float example_full_approx() {

 float a = 44.23, b = 2300.12, d, e = 1000;

#pragma full_approx(a, b) ABW (WIDTH, FRAC) True

 {

 d = a + b + e + 1;

 }

 return e;

}

Experiment

jmeint [2]

with pragmas

LLVM

Modified

Spike

Pluggable

Models for

Approx.

Operators [3]

GNU Bin.

Future Works

 Thorough experimentation to show the benefit of our infra

 Exploration of new instructions

References

[1] RISC-V Foundation — Instruction Set Architecture (ISA).

URL: https://riscv.org.

[2] A. Yazdanbakhsh et al. “AxBench: A Multiplatform

Benchmark Suite for Approximate Computing”. In: IEEE Design

Test

[3] D. J. Pagliari et al. “A methodology for the design of dynamic

accuracy operators by runtime back bias”. In: DATE, 2017.

ApproxRISC - An Approximate Computing Infrastructure for RISC-V

Tiago Trevisan Jost, Geneviève Ndour, Damien Couroussé, Anca Molnos, Christian

Fabre (Speaker)

E-mail: tiago.trevisanjost@cea.fr

Acknownledgements

This work was partially supported by the

French Agence Nationale de la Recherche

(ANR), under Grant Agreement, ANR-15-

CE25-0015, Project ARTEFACT

Enabling RISC-V support on MaxineVM
F. Zakkak, J. Fumero and C. Kotselidis

Enabling RISC-V support on MaxineVM
F. Zakkak, J. Fumero and C. Kotselidis

Maxine-VM:

• Meta-circular research VM for Java

• Multiple JIT-compilers (JMCI compatibility)

• Multiple GC algorithms (MMTk compativility)

• Multiple ISAs (x86_64, ARMv7, Aarch64)

• Cross-ISA testing framework

Maxine-VM RISC-V status:

• Cross-ISA testing framework ported to RISC-V

• Created RISC-V assembler skeleton

• Active RISC-V assembler development

T he Enab le r o f Low-Power Sys tem s -on -Ch ip

Tornado: an open platform for
energy-efficient SoCs based on

RISC-V

BARCELONA, 8TH OF MAY 2018

TORNADO: OUR FIRST RISC-V 32 BITS REFERENCE DESIGN

2016/12/08 34 www.dolphin-integration.com - CONFIDENTIAL

• Standard AMBA
interfaces

• Fully configurable
• Ready to boot SoC
• Software library
• Low level drivers
• RTOS
• Virtual platform

SMARTVISION IDE: AN OPEN SOLUTION FOR LOW POWER RISC-V SOC

2016/12/08 35 www.dolphin-integration.com - CONFIDENTIAL

• Integrated and graphical solution
for RISC-V SoC

• Complete RISC-V SoC modelling
• Power consumption modelling,

estimation and optimization
• Custom IPs virtual models
• Open APIs

2016/12/08 36 www.dolphin-integration.com - CONFIDENTIAL

Thank you for your attention,

Let’s meet and discuss around our poster

37

Ahead of Game: Codasip introduced
its first RISC-V processor in

November 2015

THE LEADING PROVIDER OF RISC-V PROCESSOR IP
THE FREE AND OPEN RISC

INSTRUCTION SET
ARCHITECTURE

Unique design automation tools that allow
users to easily modify RISC-V processors

Performance,
power

efficiency, low-
cost

Algorithm
accelerators

(DSP, security,
audio, video…)

Profiling of
embedded SW

for IP
customization

Codasip Bk: A portfolio of RISC-V processors

38

Codasip Studio automatically generates all
processor IP design kits and verifies for

RISC-V compliance

Fast design
space

exploration

Prototype a
core for a
specific

application
domain

Develop
custom

extensions

Codasip Studio
Toolset

CodAL Models

SDK

Software
Design Kit

C/C++ Compiler
Assembler

Linker
Debugger

Profiler
IDE

HDK

Hardware
Design Kit

RTL models
Synthesis scripts

Verification models
and simulators

Virtual prototypes

NEW IN STUDIO 7:

 Support for LLVM 5.0
 Native AMBA interfaces
 2-wire JTAG
 Trace support

 NEW: CODASIP STUDIO 7

Automated Verification of RISC-V-conform Floating-Point Modules

Task: Development of a simulation-based Verification Environment for our

RISC-V-conform arithmetic Floating-Point Unit

Implementation in Specman e using the Universal Verification

Methodology

Issue: Finding a ”known good” and error-free reference model

Solution: Using the Intel processor which hosts the Simulation runs

Computer Architecture Group - Heidelberg University Felix Kaiser, Stefan Kosnac, Prof. Ulrich Brü ning

Automated Verification of RISC-V-conform Floating-Point Modules

Computer Architecture Group - Heidelberg University Felix Kaiser, Stefan Kosnac, Prof. Ulrich Brü ning

Test Generator MicroTESK for

MicroTESK (Open-Source Framework)

Specifications (nML)

Translator

Test Templates (Ruby)

lui a0, 0xdead

ori a0, a0, 0x0

lui a1, 0xbeef

ori a1, a1, 0xf

add t0, a0, a1

sub t1, a0, t1

add t0, t0, t1

Test Programs
(Assembly Code)

Processor Model

Generation Core

MicroTESK is being developed at Ivannikov Institute for System Programming of the Russian Academy of Sciences (ISP RAS)
It is an open-source framework distributed under Apache License, Version 2.0 (http://www.microtesk.org)

• Randomization

• Constraint Solving

• Self Checking

Alexander Kamkin

Andrei Tatarnikov

Test Program Template in Ruby

class MyTemplate < RiscVBaseTemplate

 def run

 block(:combinator => 'product') {

 iterate {

 xor x(_), x(_), x(_)

 lui x(_), _

 }

 iterate {

 and x(_), ...

 or x(_), ...

 }

 iterate {

 auipc x(_), _

 }

 }.run

 end

end

Specifications and Test Templates

// ISA Specification in nML

op add(rd: X, rs1: X, rs2: X)

 syntax = format("add %s, %s, %s",

 rd.syntax, rs1.syntax, rs2.syntax)

 image = format("0000000%s%s000%s0110011",

 rs2.image, rs1.image, rd.image)

 action = {

 rd = rs1 + rs2;

 }

Instruction Set Architecture RISC-V

RISC-V Instruction Set Manual

Volume I: User-Level ISA (v. 2.2)
145 pages

Specified Instructions 226 instructions

ISA Specifications 3300 LOC
Test Program

Initialization

ori a7, a7, 0x2d7

slli a7, a7, 11

ori a7, a7, 0x1

slli a7, a7, 11

ori a7, a7, 0x3d2

ori t3, t3, 0x164

slli t3, t3, 11

ori t3, t3, 0x52b

slli t3, t3, 11

ori t3, t3, 0x24e

Stimulus

and s4, a7, a7

xor s8, s4, t3

auipc t2, 0xafc37

2 × 2 × 1 = 4
test cases

Author:Heng Lin, Shao-Chung Wang, and Jenq-Kuen Lee
Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan

Enabling Rust Flow and Framework
for RISC-V Architectures

What is Rust?
Rust is an open-source systems programming language that focuses on speed,

memory safety and parallelism.

Famous Rust Projects
Servo, the new browser engine being developed by Mozilla

Redox, an operating system

Maidsafe, a company that tries to create an encrypted, completely
decentralized "successor" to the internet

Rust Support on RISC-V Platform
Rust Support on Linux

Rust on Bare Metal without standard library

Rust on Bare Metal with standard library

44

RISC-V WORKSHOP BARCELONA

Enabling Rust Flow and Framework
for RISC-V Architectures

RISC-
V

• To support Rust SIMD with RISC-V
vector instructions.

Ongoing – Vector Instructions

IR code

Rust code

X86

• Enable Thread on Bare Metal
• To enable thread library in

bare metal platform, we are
designing our thread library
to replace Linux pthreads
library.

• Rust on Linux and Bare Metal

To-Do

RISC-V Vector
Instruction

Hardware-Software Co-designed Security Extensions
Maja Malenko, TU Graz, Austria

• Goal: memory isolation in small
embedded devices

• SmartOS + vscale-based MCU

• MPU with lightweight extensions
for protecting shared resources

• Task isolation

• Protecting peripherals (extended
kernel resource manager)

• Protecting IPC

• Configured by kernel/checked by
hardware protection

• Low hardware and memory footprint

• Insignificant context switch overhead

Parallel-

execution units

provide first-class

support for

custom

instructions

48

PLATFORM COMPARISONS

AVAILABLE AT:
https://gitlab.com/sfu-rcl/Taiga

 8KB 2-way Instruction/Data Caches

 Multiply/Divide Support

S10 RISC-V: revisiting the smallest program

 Goal: bring leading-edge superoptimization research to industry.

 S10 is a superoptimization framework which is:

 Retargetable

 Distributed

 Extensible

RISC-V is the first ISA targeted by S10, with ARM and x86 as wip!

 RV32I and RV64I support is complete, RV32E is coming up

 Extension M (Int. Mult./Div.) support complete

 with C (Compressed Insns),
 F (single Floats),
 D (double Floats),
 Q (quad Floats),
 V (vectors) coming next;

For more information, come talk to us in the Poster session!
https://linki.tools/s10

f o r (i n t i =1 ; j =1 ; i<N; i++) {
(. . .) depend(in :v [i -1]) depend(out :v[i])

f un1(&v[i -1] , & v [i]) ;

f o r (i n t k=0; k < i ; k++; j++) {

(. . .) depend(in :v [i]) depend(out:u[i])

f u n 2 (&v [i] , & u [j]) ;

}

fun3(3 * i) ;

}

Who needs Task Scheduling?

● Lets procedural programs be executed in dataflow manner:

semi-automatic parallelization.

● Minimal code refactoring → productivity + clarity.

● Supported by OpenMP 4.0+, StarSs, etc.

Fundamental Problem

Dependence

Inference takes

non-negligible

amount of time.

● It has been successfully accelerated

with FPGAs (see Picos).

● The problem remains for the most

taxing workloads, though.

● That is due to the high CPU-FPGA

communication latencies.

2 3

4 5

1

HW-Assisted Task Scheduling on Linux-enabled multicore Rocket Chip

Lucas Morais†, Alfredo Goldman†, Xavier Martorell‡, Daniel Jiménez‡, Carlos Alvarez ‡, Guido Araujo ✴

†University of São Paulo, Brazil. ‡Barcelona Supercomputing Center, Spain.✴University of Campinas, Brazil.

Our RISCV-based Solution

● Minimize overheads by bringing native support for

Task Scheduling to the Processor.

● Access to Picos provided by RoCC interface.

● Ongoing project - first prototype by end of semester.

● Now using ZC706 board, allowing for 6 RC cores. We'll port

it to AXIOM board afterwards, allowing for up to 12 cores.

● Picos has been tested as a FPGA accelerator serving ARM

cores before, so we have a proper performance baseline.

Ever tried booting SMP

Linux on Rocket Chip?

● System boots SMP Linux (Kernel 4.15)

● Entirely open-source project

○ Deliverables to be released as Docker

images setting relevant git repos at

the right version combination.

○ Base release has tools for building

SMP Linux, running simulations and

generating compatible Rocket Chip

bitstreams for Zynq boards (based on

freedom-u-sdk and fpga-zynq forks).

This project was financed by FAPESP under research grants (2017/02682-2) and
(2018/00687-0), and by the Spanish Ministry of Science and Technology under grant
(TIN2015-65316-P).

https://bit.ly

/ fpga-

env

Pulpino featuring Klessydra cores:
yet another RISC-V microcontroller core family for IoT,

supporting bare-metal multi-threaded execution

PULPino
feat.
RI5CY
core

PULPino
feat.
ZeroRiscy
core

PULPino
feat.
MicroRiscy
core

PULP
feat.
RI5CY-FPU
multi-core

PULPino
feat.
RI5CY-FPU
core

PULP
feat.
RI5CY-FPU
multi-core,
multi-cluster

PULP
feat. ARIANE
Linux
compatible
multi-core

PULPissimo
feat.
RI5CY-FPU
core

PULPino
feat.
Klessydra F1
core

PULPino
feat.
Klessydra S0
core

PULPino
feat.
Klessydra T0
cores

PULPino
feat.
Klessydra T1
cores

Target implementation: FPGA
pursuing HW reconfigurability

• “baseline” core
• RV32I user ISA
• M mode v1.10
• single hart

• family of cores
• RV32I user ISA
• M mode v1.10
• Atomic ext. (partial)
• multiple PC & CSR
• interleaved harts

• “IoT edge computing”
 family of cores,
• T0 microarchitecture

• + reconfigurable
multiple scratchpads

• + reconfigurable simple
vector unit

• Extended ISA

• “aerospace-tailored” core,
• T0 microarchitecture

• + HW/SW fault-tolerance
support

Present design facts & figures

• Passed all RISC-V RV32I tests and all Pulpino tests compatible with RV32I
• Basic debug hardware support
• Basic runtime system with software primitives for hart synchronization / mutex
• Equipped with dedicated test suite for hart synchronization / mutex

Klessydra S0 Klessydra T01x Klessydra T02x Klessydra T03x

exec. mode M M M M

ISA RV32I, priv 1.10 RV32I, priv 1.10 RV32I, priv 1.10 RV32I, priv 1.10

Atomic op. no AMOSWAP AMOSWAP AMOSWAP

pipe stages 2 2 3 4

Reg. file Single 32x32b Multiple 32x32b Multiple 32x32b Multiple 32x32b

harts 1 from 1 to x from 2 to x from 3 to x

irq sources external ext. + inter-hart ext. + inter-hart ext. + inter-hart

WFI core per-hart per-hart per-hart

Halt/wakeup core core core core

Throughput
 (Xilinx ser. 7)

up to 71 MIPS up to 78 MIPS up to 106 MIPS up to 135 MIPS

Observations and Ideas

• The first programming language learned shapes how one thinks

• Rocket Chip adoption rests upon Chisel adoption

• Collecting best practices for teaching Chisel will accelerate the
adoption of Rocket Chip

• Rocket Chip uptake will also increase if the code style become easier
to learn

• Main idea here is adding extra hand holding on the exact issues that
people have experienced

• Excellent documentation in the Chisel wiki, chisel-tutorial and
generator-bootcamp

Concrete Steps

• Add extra hand holding on the exact issues that people have
experienced

• Create a bridge from where the current teaching materials leave off to
the more advanced coding techniques, such as Cake Pattern and
Diplomacy

• Learning Journey – learningjourney.intensivate.com

• Developed in collaboration with Intensivate

• First undergraduate lecture was held last week back in Banja Luka

• Chisel Bootcamp – May 10th-11th in Belgrade – 30 faculty members

Hardware Undo+Redo Logging

Matheus Ogleari
Ethan Miller Jishen Zhao

https://users.soe.ucsc.edu/~mogleari/

CRSS Retreat 2018
May 16, 2018

Typical Memory and Storage Hierarchy:

Storage Data persistence Memory Fast access to working data

Persistent M
Fast me mory inte rfa ce + persis tence

2

…but unlocking its full potential isn’t easy

Logging, checkpointing,
copy-on-write, etc

Memory,
w/ persistence

[Zhao +, MICRO’13]

4

Opportunity Hardware Undo + Redo Logging

Contribution 1: Contribution 2:
Relax write order control with

undo+redo logging

Leverage cache policies to

efficiently enable undo+redo

logging in hardware

5

Core … Core

L1 … …

Root

A
C’ D

6

Benefits of Undo + Redo Logging

Micro-ops
store A’
store A’

1

2
Transactions: T , T , T A B C

A’ B’ C’
store A’N

…
Crash

Redo logging

Undo logging

“No force”
A’1

CPU Caches A copy of the old
value, Can undo
the changes

Memory barrier

RLog_A made by partially
completed Corrupted! transactions B C A’ ULog_A

Version 1

NVRAM

Version 2

8

Ongoing Work and Collaboration

• Western Digital Internship

20

STING – A Complete RISC-V Functional Verification Solution

Presenter: Shubhodeep Roy Choudhury

Co-founder & CEO, Valtrix

Co-authors: Shajid Thiruvathodi

Introduction to STING

Software stack of test generators, checkers, device drivers,
API library and micro kernel; Can be flexibly configured
into a portable bare-metal program

Custom DSL (configuration file based mechanism) and
programming frameworks allows development of
constrained random, directed, use-case or graph- based
tests

Lightweight and deterministic kernel with a very small
instruction and memory footprint

Modes of execution to make the most efficient use of
cycles in any verification environment

Supports all the IPs present in the SoC

Can be used out-of-box for supported IP/SoC
implementations or ported with minimal efforts for new
ones

Generalized architecture agnostic solution for software-
driven functional verification methodology

Verification
API Library

Test Scheduler

Peripheral
Device Drivers

Micro Kernel

Configuration
Parsers

Meta-data
Generator

Test Creator

ASM-based
Directed Tests

C++-based
Tests

Test
Configurations

DEVICE UNDER TEST (DUT)

User
Input

Generator

Library &
Kernel

Thank you for using www.freepdfconvert.com service!

Only two pages are converted. Please Sign Up to convert all pages.

https://www.freepdfconvert.com/membership

http://www.freepdfconvert.com/
https://www.freepdfconvert.com/membership

Dynamic Language

Runtimes on RISC-V

• Dynamic languages are key

• OTI/IBM J9 open source

• Universal VM for Smalltalk, Java, Ruby, …

• RISC-V port: Preliminary results

I: Short-term view

Boris Shingarov LabWare

Dynamic Language

Runtimes on RISC-V

• OMR runtime abstractions

• Target-agnostic backend synthesis from formal spec

• Formal verification of JIT

II: Long-term view

Boris Shingarov LabWare

SEGGER – The Embedded Experts

Your one-stop shop from development to production

www.segger.com

SEGGER Microcontroller provides professional

development and production solutions for the

embedded market. All SEGGER products are highly

optimized, "simply work" and benefit from more than 25

years of experience in the industry.

Founded: 1992
Employees: 50+
Founder: Rolf Segger
Headquarter: Hilden, Germany

Worldwide Distribution

Proud Sponsor and Partner of RISC-V

www.segger.com

SEGGER Microcontroller provides the most

comprehensive and professional ecosystem

for the RISC-V architecture.

IDE - Embedded Studio

SEGGER’s Embedded

Studio supports RISC-V

architecture and offers a

comprehensive solution to

develop and debug your

application.

J-Link Debug Probe

The J-Link debug

probes with their

outstanding

performance,

robustness and ease

of use are the market

leading debug probes.

Real-time Operating

System

embOS is a priority-

controlled real-time

operating system,

designed to be used as

foundation for the

development of

embedded applications.

Defeating the Recent AnC Attack by Simply
Hashing the Cache Indexes
 — Implemented in a BOOM SoC

 Wei Song, Rui Hou, Dan Meng
 Institute of Information Engineering, Chinese Academy of Sciences

• Cache side-channel attacks relies on the deterministic mapping between virtual address
to cache indexes.

• AnC is a smart cache side-channel attack that utilizes this mapping to break the ASLR
protection in most browsers.

• Our defense is to remap the cache layout using part of the physical address.

𝐶𝐼 = 𝑉𝐴[𝑠 + 5: 6] ⊕ 𝑃𝐴[2𝑠 + 5: 𝑠 + 6]

𝐶𝐼 = 𝑉𝐴[𝑠 + 5: 6]

𝐶𝐼: 𝑐𝑎𝑐ℎ𝑒 𝑖𝑛𝑑𝑒𝑥
𝑉𝐴: 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑎𝑑𝑑𝑟𝑒𝑠𝑠
𝑃𝐴: 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑎𝑑𝑑𝑟𝑒𝑠𝑠
2𝑠: 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑡𝑠

Using PA as a secret key as it is normally unknown to
user mode programs.

IF:
 An OS constantly allocates random physical pages to
consecutive virtual pages and disable the huge page
support.

THEN:
 The proposed change can stop most PRIME+PROBE,
EVICT+TIME and AnC attacks with marginal
performance overhead.

Cybersecurity software
increases vulnerability
and ruins performance

CoreGuard: Silicon IP
that integrates with
RISC-V processors

 Processors blindly run vulnerable software

 Cybersecurity companies respond with

more software

 But adding more layers of software—even

security software—just adds more bugs

 Plus each layer of software substantially

degrades system performance

 CoreGuard empowers modern RISC

processors to defend themselves in real

time from network-based attacks

 Blocks entire classes of attacks from

MITRE’s Common Weakness Enumeration

(CWE) of 705 vulnerabilities

 With optimized rule cache: little to no

impact on performance. Power and area

impact are design dependent

RISC-V Trace Interface proposed by UltraSoC, SiFive

See our poster to start integrating security on your SoC!

CoreGuard: Block diagram
Architecture agnostic IP licensed and delivered as hardware design files

 Extract a set of trace signals from host

RISC-V processor

 Provide mechanism for CoreGuard to

affect a stall on the host

 Connect host RISC-V processor's data

bus to CoreGuard instead of the

memory bus fabric

 Instantiate CoreGuard on SoC and

connect host RISC-V processor and

bus fabric

 Increase system memory as needed to

account for metadata’s needs

 Handle exceptions thrown from

CoreGuard when policy violated

Key Concepts:
Forward Caching
Index Tables
Fast Forward
Caching

Micron Technology: M3

Key Capabilities:
Sorting
Name/Value
Lookup
Scatter/Gather

Key Advantages:
Lower Latency
Efficient Bandwidth
Usage
Better Security

SCR5: efficient RISC-V core with Linux and SMP support

Copyright© 2018 Syntacore. All trademarks, product and brand names belong to their respective owners

•RV32IMC[AFD]

•1-4 Cores SMP

•7-9 stages in-order pipeline

•Full MMU, virtual memory

•U/S/M modes

•Static BP, BTB, BHT RAS

•4-64KB L1$ with hardware prefetcher

•128KB-1MB shared L2$, fully coherent + Directory

•All RAMs with ECC (SEC/DED)

•Memory Protection Unit

•32/64/128 bit AXI4

1GHz+@28nm

From 250 kGates (basic single-core config w/o caches)

Licensed and taped-out at the customer

* Dhrystone 2.1, Coremark 1.0, GCC 7.1.0 BM from TCM

** O3-funroll-loops -fpeel-loops -fgcse-sm -fgcse-las -flto

Performance*,
per MHz

DMIPS
-O2 1.60

-best** 2.48

Coremark -best** 2.83

Quad-Core Linux-capable SCR5-based SDK

Copyright© 2018 Syntacore. All trademarks, product and brand names belong to their respective owners

SDK package:

•Open FPGA project

•SCR5 netlist

•Pre-build FPGA images

Off-the shelf FPGA devkit board

•Number of standard SDKs supported

 Arria 10: 100MHz+, ~50% utilization

•Low-cost Olimex JTAG cables

Software (sources and pre-built):

•32bit SMP Linux (4.x kernel)

•Bootloader

•SW samples, tests, benchmarks

GCC/Eclipse based IDE

Documentation

Demo

4/25/2018 ©2018 Western Digital Corporation or its affiliates. All rights reserved.

CoT, RoT, RISC-V
& High Volume Application

Danny Ybarra – CTO organization Storage Device Security Architect

April 25, 2018

• System Security Challenge

• System Chain of Trust (CoT) and Root of Trust (RoT)

• WD Security Deployment: a High Volume Production application

• WD RoT basics

• RoT And RISC-V Opportunities

2
© 2016 Western Digital Corporation All rights reserved

Security: CoT, RoT, and RISC-V (More Than a Single Feature)

Topics

© 2016 Western Digital Corporation All rights reserved 3

• Today’s Security Solution are created with independent
security components

Each component defines its contribution to the security
solution and is measured against different Security
Evaluation standards or best-practices

User Data passes between the components with varying
degrees of data protection

• NEXT STEPS: System Security should bind the system’s security
components

– System Guidelines are being established to define relationships between
components. (e.g. SP800-193: CoT & RoTs that provide Protection,
Detection, & Recovery)

Security: CoT, RoT, and RISC-V (More Than a Single Feature)

System Security Challenge

• Device’s RoT also serves as a Chain of Trust (CoT) keystone

• Platform & Device CoT Functions need:

– Device Attestation

– Device Roles Authentication

– Device Feature Authorization

– General Security Protocol support

• RoT (w/RISC-V) considerations

– Balancing Security vs. Performance vs. Cost
– Agility to adapt to multiple internal and external application

© 2016 Western Digital Corporation All rights reserved 4

Security: CoT, RoT, and RISC-V (More Than a Single Feature)

System’s Security Integration

• Security Requirements must:
– Satisfy customer and WD needs
– Protect against remote and

physical attacks
– Protect against external and

internal attacks
• Device and Processes RoTs

protect/detect/manage:
– Secure Objects (FW & CSPs)
– Secure Messages/Protocols
– Shared and Device Unique RSA

Key Injection

• Device RoT designs balance:

– Internal & External Protection

– Performance

– Cost

– Apps Agility

© 2016 Western Digital Corporation All rights reserved 5

Security: CoT, RoT, and RISC-V (More Than a Single Feature)

WD Storage Security Deployment: High Volume Application

• RoT Basics

– Physical Isolation

– FW, CSPs, & Message Authentication entering RoT

– Cryptographically Binds FW/CSPs to Device

– Provide ClearText Key/CSP isolation

– Provide “Atomic” function protection

• RoT HW & FW Operation provide:

– Device Access Control management

– Security Services

– Immutable Key Management

• Media Encryption Key (MEK) Management RoT Example

– Has sole Media Encryptor Key cache access

– Generates and protects Cleartext MEKs
– Binds security protocol operations to Cleartext MEK usage
– Binds & protects MEKs/Objects to device unique symmetric Keys

6

Security: CoT, RoT, and RISC-V (More Than a Single Feature)

WD Storage Device RoT Basics

© 2016 Western Digital Corporation All rights reserved

• Each RoT Deployment Must balance:
– Protection, Performance, Cost, TimeToMarket

• Cryptographic Performance Range
– Full Algorithm Assist
– Partial Algorithm Assist
– FW Instruction Assist
– FW Only
– ROM or FW cryptographic functions
– Random Number Generation

• RoT Virtual or Physical isolation & Memory Mgmt
– Privilege vs. User Mode Isolation
– Resource Sharing Concerns (MMU: SRAM, DDR,

Ports, SoC Modules)

• Other Opportunities
– Other Side Channel Attack types (simple power, diff power)
– OTP Management

• Security Evaluation standardization

• CoT Deployment

Note: RISC-V opportunity in RED

© 2016 Western Digital Corporation All rights reserved 7

Security: CoT, RoT, and RISC-V (More Than a Single Feature)

SoC RoT And RISC-V Customization Opportunities

©2018 Western Digital Corporation or its affiliates. All rights reserved. 4/25/2018 8

