RISC-V: Opportunities and Challenges in SoCs

Greg Wright
Sr Director, Engineering
Qualcomm Technologies, Inc.

December 5, 2018
Introductions

• Who am I?

• Why am I here?
Quick tour of an SoC
Quick tour of an SoC
Complex system

- Multiple ISAs and software stacks
- Multiple roots of trust
- Multiple power domains
- Multiple product tiers and configurations
- Multiple development cycles across different components
All across the spectrum
Scale of CPUs

Tiny microcontroller
Embedded core
DSP
Application processor

Minimal area, power
Known functionality & Perf/power requirements
Specialized application processing
Some third party code
General purpose
Power envelope

“Always on” \(\approx 2 \text{ W}\)
ISA & microarchitecture

- Single-issue in-order RISC
- VLIW DSP
- Multithreaded GPU
- Vector
- Other customization
- Wide out-of-order RISC + SIMD
Software stack complexity
Lines of code - order of magnitude

100s → 80 million*

* Not including 3rd party applications
ISA features and extensions

Customized for
- Signal processing
- Image processing
- Security
- Machine learning
- ...

High-level features
Multi-vendor standard
3rd party ecosystem

Minimal

At least 6 different ISAs in use today in a single SoC
RISC-V: The opportunity
The power of freedom and open community

Customization
Mix-and-match extensions
Domain-specific features
Proprietary extensions (“secret sauce”)
Spectrum of implementations (freedom to build)

Harmonization
Common base
Shared toolchains, infrastructure, libraries
Rich software ecosystem
What is ISA?

Two views

Software Team
Software

Hardware Team
Hardware

“Contract”
In practice
What is ISA?
My definition

Instruction Set Architecture, noun

The art of turning a hardware problem into a software problem
Software Ecosystem

“Contract”

Hardware Developers

Design Points

Solutions

Means to an end
“Multiple Contracts”?
Changing over time?
RISC-V: The opportunity
The power of freedom and open community

Customization
Mix-and-match extensions
Domain-specific features
Proprietary extensions ("secret sauce")
Spectrum of implementations (freedom to build)

Tension

Harmonization
Common base
Shared toolchains, infrastructure, libraries
Rich software ecosystem
Core spectrum revisited
Minimize architectural tension

- Tiny microcontroller
- Embedded core
- DSP
- Application processor

- Third party software ecosystem
- Security, Virtualization
- Common toolchains, debug infrastructure, libraries
RISC-V: The opportunity

• Great potential
 ◦ Common base + ability to specialize where necessary
 ◦ Enthusiastic community

• Opportunity to rationalize and simplify complex SoC design
 ◦ Enable new features and capabilities
RISC-V: Some challenges

• Success = Attractive platform for solving problems
 ◦ Software portability
 • Feature discoverability, not a unique software build per target
 ◦ Interface stability vs evolution
 ◦ Balancing hardware vs software needs

• Fragmentation is the enemy
 ◦ Avoid a labyrinth of options, configurations, platforms
 • => Software and hardware test nightmare
 ◦ Complex software needs standardization and stability
 ◦ Good standards support a range of implementations and future evolution
Appeal to the community

• Come together, participate and standardize!
 ◦ Bring experience & expertise => build the future on lessons of the past

• Lower-end and (future) high-end cores need to play nicely in a complex SoC environment:
 ◦ Security
 ◦ Virtualization
 ◦ Memory models
 ◦ Cache & TLB management
 ◦ Power management
 ◦ Interrupt delivery
 ◦ Coexistence with current solutions (bus protocols, etc.)

• Great potential - let’s make this happen!

Common platform
= reusable software
= growing ecosystem
An announcement

Qualcomm Technologies, Inc., will be shipping RISC-V in a high volume product in 2019