Secure RISC-V

A FIPS140-2 Compliant Trust Module for Quad 64-bit RISC-V Core Complex

Shumpei Kawasaki, Murthy Vedula, Software Hardware Consulting Group
Kesami Hagiwara, Cong-Kha Pham, University of Electro-Communications
SHC Products

Secure OS
Crypto API
Connectivity e.g. Lora, BTLE
BSP
Compiler
OS Internals
30+ Years Security Hardware

1986 IC card
1991 GSM SIM card
1995 Modulo Exponentiation Coprocessor
1996 Java Card™ MULTOS
2003 C-Callable Crypto Library for Routers
2004 Contactless eMoney “Suica” (Sony Felica).
2008 Secure OS for Smart Phone.
2018 Apple Secure Enclave.
Open Sourcing Security

• Proprietary CPUs designs are not disclosed (e.g. meltdown / spectrum).

• Third-party can confirm vulnerability for white box security functions (source code release).

• Open source security IPs will lowers barriers to secure systems and nurture future exciting application products (e.g. AI, cyber-physical systems, and robotics).

• This help transition from security based on “obscurity” to one based on “let enemy know”.
cryptospec

- cryptospec macro cell IP protects system and user secrets from unauthorized access.
- cryptospec is deeply embedded in 64-bit RISC-V system to prevent the main CPUs running unauthorized software. Makes go-or-no-go decision based on trust measure of the instructions/data.
- Has its own TLS software to establish its own secure connection with the server.
Supply Chain Key Solutions

- Key Gen and Die Injection Solutions
- Personalization Solutions
- OTA Update Solutions
- Remote Attestation Solutions

18/12/04
Cryptospec Secure OS

• EEPROM/Flash/OTP stores long-term, permanent keys (e.g. RSA/DSA/ECDSA) and private keys (e.g. 3DES/AES/HMAC).

• RAM stores short-term (e.g. TLS session keys (e.g. 3DES/AES/HMAC).

• Privacy information is stored in on-chip Flash or external Flash encrypted.

• Own SSL/TLS separate from Linux SSL/TLS.

• Callback, Integrity check, Caller address list.
Open Secure MCU
Igloo2 25K FPGA

Open RISC-V Coreplex 180nm

Open DevKit in KiCad

Open Dev Environment
OP-TEE = Trusted Execution Environment

Cyber-Physical System
POC

KiCad Board

DDR
I/O

Open Secure MCU in FPGA (120KG)

Open RISC-V Coreplex in 40-65nm SoC (>MG)
Secure RISC-V System

- TEE Implementation Going in Parallel
- RISC-VのTLBエントリ数
 - 命令：32エントリ
 - データ：32エントリ
- L1キャッシュ
 - 4KB (テストチップ)
 - 16KB (実チップ)
- L2キャッシュスクラッチバッド
 - L2 64KB RAM (テストチップ)
 - L2キャッシュ 256KB (実チップ) 予

18/12/04
FIPS140-2 Certification

• Tamper-evident coatings or seals.
• Zeroization
• Methodically Tested and Checked: Design Assurance.
• Vulnerability Analysis and Independent Testing.
• Previous Experience on FIPS140-2 Level 3 Certification.

18/12/04
Bi-Endianness

• Many critical infrastructure (high-speed railroad, power plants,) were constructed in big-endian. Despite secondary to little-endian, BIG-ENDIAN addition will be important for certain apps.

• We are ask OSS engineers in Japan in hope of making contribution to RISC-V.
Security Needs for Society 5.0 Cyber-Physical Systems

- Cloud
- Factory
- Identify Real System from Fake
- Reject Malicious SW
- Attack Via Devkits
- Cyber Attack
- Security Patches
- Ofusticate Keys
- Physical Analysis
- Scramble Leaks Signals
- Side-Channel Attack
- OTA Update Remote Attestation
- Payment Support
- Multiple Party Apps on 1 Platform
- 18/12/04
Conclusions

• We are planning to develop an open security system level platform with assistance from METI and NEDO.

• The benefit will be a broader reach of security technologies to IoTs without fragmenting RISC-V systems.

• The security architecture is orthogonal to the existent and future RISC-V hardware (e.g. TEE addition) and software (OP-TEE) activities also assisted by METI.

• Emphasis on Japanese cabinet’s Society 5.0 infrastructure applications led us to bi-endian architecture extensions.

• We are working with AIST, Hitachi, SECOM, Keio University, University of Tokyo, NEDO and METI to make this into a reality.