RISC-V Summit 2018

SiFive’s Trusted Execution Reference Platform

Palmer Dabbelt, Nate Graff
RISC-V Summit: December 5th, 2018
“Can I get a RISC-V U2F token?”

“RISC-V doesn’t have ARM TrustZone, we can’t use it.”

“How do I isolate private data?”

RISC-V needs a comprehensive playbook for implementing secure embedded computing solutions.

“How do we protect against side-channel attacks?”

“Can RISC-V do secure boot?”
What is a Trusted Platform?

- **Secure Boot**
 - Control the software executing on a machine
- **Private Storage**
 - A place to store cryptographic keys
- **Tamper-Evident Storage**
 - A place to store the time the system was shut down
- **Remote Attestation**
 - Can I trust the target to do compute for me?
- **Side-Channel Attacks**
Three questions to answer:

Can **RISC-V** systems provide a **comprehensive** solution to **secure** embedded computing?

What are the **components** of a secure embedded RISC-V system?

How do we know when we have all the **components** we need?
What does RISC-V Have Now?

- **3 modes in RISC-V ISA**
 - User, Supervisor, and Machine

- **Two protection boundaries**
 - Supervisor protected from user
 - PMPs protect all accesses

- **Address translation and protection**
 - Standard page-based scheme

- **Physical memory protection**
 - Base+bounds scheme
 - No translation
 - Protect all accesses
Paging on RISC-V Systems

- **SATP CSR**
 - Per-hart page table base pointer
- **Between user and supervisor**
 - Single register
- **Standard-looking scheme**
 - Normal forward paging
 - 4KiB pages for 64-bit systems
 - Various larger pages, global pages, accessed/dirty bit, etc
- **Support for extension**
 - Standard paging is defined in the ISA
 - Bits remain for extensibility

User Mode

Address Translation and Protection (Paging)

Supervisor Mode

Machine Mode

Physical Memory Protection
Physical Memory Protection (PMP)

- **PMP CSRs**
 - Per-hart page table base pointer

- **Protection for all accesses**
 - User, supervisor and machine
 - Protection only, no translation

- **Region-based scheme**
 - CSR value defines region size and shape
 - Up to 16 regions

- **Software configurable**
 - Writable by machine-mode software
 - Can be locked until system reset

- **Protection for machine-mode only implementations!**
Physical Memory Protection (PMP)

Access to memory regions granted by PMP configuration

Thread 1: USB Stack

Thread 2: Crypto Runner
Physical Memory Protection (PMP)

- Access prevented by PMP
- Privilege boundary is preserved
Example PMP Uses

● **Time multiplex multiple programs without paging**
 ○ Programs can run in user mode without supervisor mode
 ○ PMPs can protect programs from each other

● **Protect devices from untrusted supervisor-mode programs**
 ○ PMPs protect all physical accesses per mode

● **Protect and share memory in multi-CPU programs**
 ○ PMPs are per-hart configurations
 ○ Up to 16 regions

● **Disable a device until a reboot**
 ○ PMPs can be locked, disabling a device from even machine mode

● **Protection for machine-mode only implementations!**
Protection from Bus-Mastering Devices

- **PMPs apply to all accesses from a CPU**
- **Devices can be protected by address**
 - Protections are per privilege mode
- **Doesn’t require trusting the bus**
 - Accesses are mandated by the CPU
- **Similar scheme for protecting buffers**
 - PMPs just protect ranges

```
Trusted Firmware
  PMP
  Bus
Fingerprint Reader
  Memory
Linux
  PMP
```

- Trusted Firmware
- Linux
- Fingerprint Reader
- Memory
- PMP
- Bus
Gaskets: PMPs for Devices

- PMPs only apply to CPUs
 - Bus mastering devices can access memory too

- Trusted Firmware
- Linux
- GPU
- Fingerprint Reader
- Memory
- Display

Bad!
Gaskets: PMPs for Devices

- **PMPs only apply to CPUs**
 - Bus mastering devices can access memory too

- **Gaskets for other masters**
 - Memory-mapped PMPs
 - Same protecting scheme

- **Not a RISC-V specification**
 - A SiFive specification
 - Available in FU540-C000 (on the HiFive Unleashed)
Writing Trusted Software

- Hardware mechanisms allow us to limit trust placed on software
- Software must have a hardware root of trust
- Physically Unclonable Function (PUF)
 - Enables a per-device secret cryptographic key
 - Physical devices cannot be cloned
 - “Sanctum: Minimal Hardware Extensions for Strong Software Isolation”
 - Must be implemented in hardware
- Protection against physical attacks
 - Reset timing attacks, clock attacks, power attacks, etc
 - DRAM encryption
Trusted Reference Platform

- Runtimes are written to a platform more than to an ISA
- We need a specification to allow for portable software
- Some ISA-related concerns
 - Privilege modes
 - Existence of PMPs
 - Resistance to speculative side
- Many platform-related concerns
 - Gaskets and bus blockers
 - Reset sequence for secure boot
 - Presence and detection mechanism for a PUF
- ISA specifications aren’t sufficient, we need a platform spec!
SiFive Trusted Firmware

- **Static partitioning of SOC**
 - Multiple security zones
 - Time multiplexing of payloads

- **Evaluation of trusted platform spec**

- **Designed to be simple and portable**
 - Suitable as an example
 - Useful for simple systems
 - Proof of concept for the platform

- **Berkeley Keystone Talk**
 - Active research in security monitors
 - 3:30pm Today in Room 209/210

- **HexFive Security Monitor**
 - Demos on the show floor
Demo!

- **SiFive’s Freedom U54 CoreIP**
 - Same IP on the FU540-C000 ASIC

- **Rambus CryptoManager IP**
 - Hardware root-of-trust (PUF)

- **Secure Boot of Linux-Based System**