How to Address RISC-V Compliance in the Era of OPEN ISA and Custom Instructions

Embedded World, February 2019

Lee Moore

©️2019, Imperas Software
Agenda – RISC-V Compliance

• Compliance for RISC-V is extremely important
• Imperas background
• RISC-V Foundation’s compliance suite
• Experiences when checking compliance on user designs
• Summary
Agenda – RISC-V Compliance

- Compliance for RISC-V is extremely important
- Imperas background
- RISC-V Foundation’s compliance suite
- Experiences when checking compliance on user designs
- Summary
Q: What is meant by “compliance”?
A: The device works within the envelope of the agreed specifications

Q: Is there an easy process or path to follow to develop methodologies/tools for compliance?
A: NO – all established ISAs are single company controlled and those companies work extremely hard on proprietary solutions to ensure that all designs that go out their door work correctly – so RISC-V has to pioneer compliance collectively

Q: What happens if the RISC-V industry builds devices that are not complying with specifications?
A: Users cannot assume that tools like C compilers, operating systems, and application software will be transferable across devices and work correctly
Non-Compliance

- Non-compliance makes it very hard or impossible to benefit from the developing RISC-V ecosystem
 - Won’t be able to use GCC, LLVM, GDB, etc...
- Fragmentation is the result of non-compliance and would be a disaster for the RISC-V industry as it leads to incompatible processors
 - Locked in to one CPU, software not portable across different chips / boards
- If you build a non-compliant processor or simulator or tool
 - => IT IS NOT RISC-V
Agenda – RISC-V Compliance

• Compliance for RISC-V is extremely important

• Imperas background
 • Why is Imperas interested in RISC-V & RISC-V compliance
 • Imperas related experience
 • How can Imperas tools help with compliance

• RISC-V Foundation’s compliance suite

• Experiences when checking compliance on user designs

• Summary
Imperas Focus

• “nobody designs a chip without simulation”,
 at Imperas we believe that:
 “nobody should develop embedded software without simulation”

• Imperas develops simulators, tools, debuggers, modelling technology, and
 models to help embedded systems developers get their software running...
 • and hardware developers get their designs correct

• 10+ years, self funded, profitable, UK based, team with much EDA (simulators,
 verification), processors, and embedded experience

• www.imperas.com/riscv
• Jun 2016 – watched DAC ‘academic’ presentation
• Nov 2016 – attended RISC-V workshop and saw progress
• 2017Q1 – started feeling interest from customers
• Mar 2017 – joined RISC-V Foundation
 • Compliance, Formal, Vector, Marketing Task Groups
• Nov 2017 – released first OVP model of RISC-V
• Mar 2018 – released complete RV32/RV64 envelope model
 • all options of specifications (no hypervisor, vectors yet)
• Jun 2018 – released virtual platform of SiFive FU540 RV64GC booting SMP Linux
• Jun 2018 – Andes certify Imperas as reference RISC-V simulator
• 2018Q3 – Imperas customers developing RISC-V SoCs
• Sep 2018 – released first commercial tool flow for custom instruction extension development, testing, profiling, and verification
• Oct 2018 – released riscvOVPsim – free envelope simulator
Agenda – RISC-V Compliance

• Compliance for RISC-V is extremely important
• Imperas background

• RISC-V Foundation’s compliance suite
 • Short history
 • Current status

• Experiences when checking compliance on user designs
• Summary
The RISC-V Foundation’s Compliance Task Group

• Jun 2017 group started
 • Compliance testing is a testing technique which is done to validate whether the system developed meets the prescribed standards or not. It is not design verification testing
 • compliance testing is looking for issues like missing registers, modes, instructions – not for bugs in RTL implementations...
 • The tests have to be written to ensure compliance/non-compliance is observable in a test signature. The signatures are published so that the user does not have to run a reference model and can compare the results of their target runs to the reference signature

• Jan 2018 initial rv32i test suite provided by Codasip
• Jun 2018 Imperas, Embecosm worked on GitHub, made repo public
• Oct 2018 Imperas improved test coverage, added new suites, ported 32bit riscv-tests
Compliance Suite

• It is ‘work in progress’

• Two components
 • Test suites
 • Each suite focuses on a feature set of the RISC-V envelope
 • Initial focus is instructions, user mode spec, e.g. rv32i, rv32im, rv32imc, rv64i, ...
 • Awaiting RISC-V platform specifications to subset privilege spec, before starting privilege suites

• Framework
 • Make, bash, and scripts
 • Encapsulate compiler tools, linkers, simulators, and targets (Devices Under Test)
 • Includes simulator: as example target, and to generate reference signatures
 • Run: Select suite and target
 • Runs each test, target produces signatures, compares to saved golden reference signature

• Available: www.github.com/riscv/riscv-compliance
Compliance Suite Status (rv32i)

- Need more tests
- Investigate (more tests?)
- no tests yet (fence.i not in 2.3 RV32I)
- pseudos+CSR, no tests yet (not in 2.3 RV32I)

Notes on rv32i test suite:
- 54 hand coded directed tests (average 150 instructions each)

Notes on Decode Coverage
- Decode Coverage: observe changes on all bits of legal decodes
- Decode Coverage data from the Imperas Fault Simulation Coverage tool
 - ran 478,390 simulations in 308 secs
Coverage Metrics for Compliance Tests

• Coverage metrics used in RTL design verification are *not applicable* as they are often functional and connected to specific microarchitecture (RTL)

• Imperas’ Code Coverage Tool provides coverage of model source, which is useful to see how much of model is exercised by tests but *does not* show how much of specification is covered

• Imperas’ Fault Simulation Coverage tool provides *Instruction Decode Coverage*
 • explores the decodes of the instructions and mutates legal bits
 • detects that there is a test that stimulates & observes each bit
 • tool is very fast, runs in parallel, provides other metrics including data coverage
 • very useful for users as *provides coverage of custom instructions*
riscvOVPsim simulator

- Instruction Accurate simulator using high performance Just-in-Time Code Morphing that executes RISC-V binaries and runs on Linux/Windows PC
 - Runs very fast, 1,000 MIPS
- Industrial quality for use in test development, software development, compliance testing and design verification
 - Includes capabilities to perform RISC-V compliance signature generation
- Maintained and supported by Imperas Software (www.imperas.com)
- Simulator restricted to single processor model and fully populated memory
 - Loads cross compiled ELF binaries
 - Uses semi-hosting to provide easy access to host I/O
 - Single executable (includes model, memory, platform, simulator, tools)
- Includes Apache 2.0 Open Source model of complete RISC-V ISA envelope model of 2.2, 2.3, 1.10, 1.11 revisions of the RISC-V Foundation specifications (not hypervisor/vectors are not stable)
- **FREE. No license keys or license management**

Imperas riscvOVPsim Compliance Simulator
Issues to be sorted by RISC-V Foundation’s Compliance Working Group

• Detailed specifications needed
 • the structure of the Compliance Suite Framework (and how used)
 • what content of test should be (how written)
 • list of all the tests needed in each test suite (what is covered of specification)

• Formal process for RISC-V Foundation to allow user to claim their processor is a RISC-V processor
 • i.e. process to explore and record ‘is it a RISC-V compliant design?’
 • the ‘rubber stamp: RISC-V inside’
• Compliance for RISC-V is extremely important
• Imperas background
• RISC-V Foundation’s compliance suite

• Compliance Experience
 • Imperas experience of examining compliance on various designs
 • Examples of Fails...
 • Recommendations

• Summary
Imperas: Exploring designs

Note: these notes are Imperas exploring designs brought into Imperas, not a discussion of what our customers are doing with our tools & test suites

• Many candidate DUTs (Device-Under-Test) = customers, partners, & for fun...
 • proprietary RTL, open source RTL
 • FPGA
 • Silicon
 • Simulators

• Process – goal is to load .elf file, run, write signature, compare with golden reference

• Develop encapsulation of DUT
 • so can run public GitHub Compliance Suite – and – Imperas internal compliance test suites

• Different levels of complexity and challenge
 • ISA Simulators relatively easy (as can read/write files)
 • RTL simulators a little harder, 2 approaches
 • Memory read/write
 • GDBserver – control as if hardware, inject, extract data
 • Hardware (FPGA, silicon)
 • Pod, JTAG, GDBserver type approaches to get data in/out
What did we find...

- Many candidate DUTs (Device-Under-Test) = customers, partners, & for fun...
 - proprietary RTL, open source RTL
 - FPGA
 - Silicon
 - Simulators
- Missing registers
- Missing instructions
- Floating point mode change issues
- PMP implementation issues
- ...
Agenda – RISC-V Compliance

• Compliance for RISC-V is extremely important
• Imperas background
• RISC-V Foundation’s compliance suite
• Compliance Experience
 • Imperas experience of examining compliance on various designs
 • Examples of Fails...
 • Recommendations
• Summary
Summary

• Compliance – it’s a work in progress
 • Initial suites & framework can be used NOW
 • Users are telling us the tests are finding issues for them
 • Ongoing work on RV32 A, F, D user mode tests
 • Need to start compliance suite tests of privilege mode & platforms
 • New ISA extensions (e.g. Vector, BitManip, DSP, ...) will need to add own suites
• Understanding & adoption has started
• Need to consider compliance as fundamental part of methodology
 • Continuously...
Thanks

• More Information:
 • www.imperas.com/riscv
 • www.OVPworld.org/riscv
 • www.github.com/riscv/riscv-compliance

• Lee Moore - moore@imperas.com
• Simon Davidmann - simond@imperas.com