Technical Committee Update

Kevin Chen
Co-Chair, Fast Interrupt Task Group
Senior Architect
Andes Technology

2019 RISC-V Workshop Taiwan
Introduction

- RISC-V is an open instruction set architecture
- Its instructions and features are openly discussed and defined by members
- If you have great ideas, you are welcome to propose them to the Technical Committee
- Once approved, a Task Group is formed to discuss and come up with a detailed proposal
- The final proposal will be ratified by all member companies to become the official specification
Each Task Group (TG) is run by a chair and a co-chair

- It is responsible to collect ideas from task group members and form a consensus
- There will be regular meetings or discussion threads through workspace/e-mail

This open discussion is the best way to combine the talents and expertise from different companies

You are all encouraged to join task groups of interest to contribute your valuable ideas

Currently, there are 17 active task groups and more are coming
List of Task Groups

- **Base ISA**
 - Going through the ratification process and will soon be voted by member companies

- **Fast Interrupts**
 - Focuses on developing a low-latency, vectored, priority-based, preemptive interrupt scheme
 - Ideal for MCU and real-time systems

- **P Extension**
 - Defines Packed-SIMD DSP extension instructions operating on integer registers
 - Also defines compiler intrinsic functions for high-level programming languages
List of Task Groups (cont.)

- **Privileged Spec**
 - Just ended the public review period with no major issues

- **SW Tool Chain**
 - There is a dedicated session tomorrow

- **Vector Extensions**
 - This is very popular due to recent AI applications
 - Recently released a draft spec. 0.7

- **Processor Trace**
 - Standardize a hardware interface and a packet/data format for trace encoders
List of Task Groups (cont.)

- **Debug**
 - Ratified spec is now available on riscv.org
 - Errata rolled into ratified spec.

- **Trusted Execution Environment**

- **Cryptographic Extensions**

- **Bit Manipulation**

- **Compliance**

- **Formal Spec**
List of Task Groups (cont.)

- **J Extension**
 - aims to make RISC-V an attractive target for languages that are interpreted or JIT compiled

- **Memory Model**

- **Opcode Space Management**

- **Sv128**
 - Defines a 128-bit virtual address space
Update on Fast Interrupt TG

As the co-chair, I like to give a brief update on the Fast Interrupt TG

- The spec. is most finished with some details to be finalized

A new scheme Core-Local Interrupt Controller (CLIC) is proposed

- It has very low latency and is ideal for MCU or real-time systems

Main features

- Supports up to 4096 interrupt sources
- Supports up to 256 priority levels
- Automatic HW preemption
- Selective Hardware Vectoring
Andes has proposed this feature to let users select the behavior of each interrupt: either hardware vectored or non-vectored.

- It allows optimization for each interrupt to gain benefits from both behaviors

Hardware vectored
- Pro: faster interrupt response
- Con: bigger code size (to save/restore contexts)

Non-vectored
- Pro: smaller code size (sharing same common code to save/restore)
- Con: slower interrupt response

Typical usage: critical interrupts are vectored while others are non-vectored
Additional Optimization

- To avoid creating new instructions and hence extra work for toolchain, all new features only use special control and status registers (CSRs)

- A special CSR to find the pending interrupt with the highest priority (and disable/enable interrupts)
 - This optimizes the performance of non-vectored interrupts

- A special CSR to conditionally swap the stack pointer based on the privilege mode
 - To speed up OS switching mode

- A special CSR to conditionally swap the stack pointer based on the interrupt level
 - For RTOS to switch between interrupt and non-interrupt code
Thank you