Status update of RISC-V P extension task group

Chuan-Hua Chang
Senior Director
Andes Technology Corp.

2019 RISC-V Workshop Taiwan
RISC-V DSP (P) Extension TG

- **P extension task group charter**
 - Define and ratify Packed-SIMD DSP extension instructions operating on XLEN-bit integer registers for embedded RISC-V processors.
 - Define compiler intrinsic functions that can be directly used in high-level programming languages.

- **Chair:** Chuan-Hua Chang, Andes Technology
- **Co-chair:** Eric Flamand, Greenwaves Technology

Taking RISC-V® Mainstream
RISC-V DSP (P) Extension Proposal

- DSP instruction set proposal based on AndeStar™ V3 DSP ISA.
 - Use RV32 and RV64 XLEN-bit GPRs.
 - Support saturation and rounding.
 - Support fixed-point and integer data types.
 - **SIMD**-instructions with 8b, 16b, 32b element size.
 - **Partial/Non-SIMD** DSP instructions operating on 8-bit, 16-bit, 32-bit and 64-bit data types.
 - 64-bit signed/unsigned addition & subtraction (RV32)
 - 64-bit addition with 16b/32b multiplications
 - E.g., $64 = 64 + 16 \times 16 + 16 \times 16$
 - E.g., $64 = 64 + 32 \times 32$
GPR vs Separate Register

- GPR-based SIMD is a more efficient, low power DSP solution for embedded systems running applications in various domains such as audio/speech decoding and processing, IoT sensor data processing, wearable fitness devices, etc.

- It addresses the need for high performance generic code processing, as well as digital signal processing.
16-Bit SIMD Instructions

- Min
- Max
- Clip
- ABS
- Compare
- Signed
- Unsigned

OP1 | OP2
8-Bit SIMD Instructions

OP1 OP2 OP3 OP4

- + ×

Min Max

Unpack ABS

Compare

Signed Unsigned
Dual 16x16 & 32-Bit Add/Sub (RV32)

6x Baseline operation

Taking RISC-V® Mainstream
2 Dual 16x16 & 32-Bit Add/Sub (RV64)

12x Baseline operation

Taking RISC-V® Mainstream
Dual 16x16 & 64-Bit Add/Sub (RV32)

2.6x Q15 dot prod
Quad 16x16 & 64-Bit Add/Sub (RV64)

64b

16b 16b 16b 16b

16b 16b 16b 16b

32b 32b 32b 32b

3.6x Q15 dot prod
Quad 8x8 & 32-Bit Add (RV32)

3.4x Q7 dot prod
Dual Quad 8x8 & 32-Bit Add (RV64)

7.7x Q7 dot prod
64-bit Data Type

- Use pairs of GPRs on RV32.
- Use a GPR on RV64.
- Needed for compiler to generate DSP instructions automatically.
- The 64-bit operand type is an interface specification. An implementation can still implement 2R1W register file with multi-cycle reads/writes to support the 64-bit type on RV32.
DSP Library Speedup

RV32

<table>
<thead>
<tr>
<th>Speedup</th>
<th>Basic</th>
<th>Complex</th>
<th>Controller</th>
<th>Filtering</th>
<th>Matrix</th>
<th>Statistics</th>
<th>Transform</th>
<th>Util</th>
<th>Average /Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>D25 / N25 (RV32) AVG</td>
<td>2.4</td>
<td>1.62</td>
<td>1.84</td>
<td>2.26</td>
<td>1.62</td>
<td>2.44</td>
<td>1.29</td>
<td>1.08</td>
<td>1.82</td>
</tr>
<tr>
<td>MAX</td>
<td>5.16</td>
<td>4.09</td>
<td>2.13</td>
<td>4.11</td>
<td>2.75</td>
<td>4.39</td>
<td>1.78</td>
<td>1.43</td>
<td>5.16</td>
</tr>
</tbody>
</table>

RV64

<table>
<thead>
<tr>
<th>Speedup</th>
<th>Basic</th>
<th>Complex</th>
<th>Controller</th>
<th>Filtering</th>
<th>Matrix</th>
<th>Statistics</th>
<th>Transform</th>
<th>Util</th>
<th>Average /Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>DX25 / NX25 (RV64) AVG</td>
<td>4.73</td>
<td>1.92</td>
<td>1.31</td>
<td>2.41</td>
<td>3.04</td>
<td>4.14</td>
<td>1.28</td>
<td>1.19</td>
<td>2.5</td>
</tr>
<tr>
<td>MAX</td>
<td>10.81</td>
<td>4.14</td>
<td>1.59</td>
<td>5.04</td>
<td>6.83</td>
<td>8.51</td>
<td>1.67</td>
<td>2.72</td>
<td>10.81</td>
</tr>
</tbody>
</table>
DSP ISA Performance

Helix MP3 decoder

<table>
<thead>
<tr>
<th>GCC Compiler</th>
<th>Decode (MCPS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compile with RV32IMC ISA</td>
<td>20.78</td>
</tr>
<tr>
<td>Compile with RV32IMC + DSP ISA</td>
<td>11.27</td>
</tr>
<tr>
<td>Cycle reduction %</td>
<td>46%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GCC Compiler</th>
<th>Decode (MCPS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compile with RV64IMC ISA</td>
<td>14.85</td>
</tr>
<tr>
<td>Compile with RV64IMC + DSP ISA</td>
<td>11.31</td>
</tr>
<tr>
<td>Cycle reduction %</td>
<td>23%</td>
</tr>
</tbody>
</table>

* MCPS: Millions of Cycles Per Second
P Task Group Progress

- Created P extension instruction proposal spreadsheet for TG members to review.

- Benchmarking on DSP library functions for the usefulness of these instructions.
 - About ~100 instructions are used in DSP library and audio/speech codec optimizations.

- Preparing detailed instruction operation specification.

- Preparing toolchain and simulator release for TG members to evaluate the use of these instructions.
Thank you