New Members of AndeStar™ V5 Processor IPs

Charlie Su, Ph.D.
CTO and EVP
Andes Technology

2019 RISC-V Workshop Taiwan
Overview of the Talk

- Latest AndeStar™ V5 Lineup
- New: Ultra-Compact Low-Power Processor
- New: Processors with DSP/SIMD ISA
- New: Processors with Multicore Cache-Coherence
- Concluding Remarks
Andes Technology Corporation

- A 14-year-old public CPU IP company
- >150 licensees worldwide
- >1B Andes-Embedded SoC shipped in 2018

- A founding member of the RISC-V Foundation
- A major open source maintainer/contributor
- Active involved in standard extensions
 - Chair of P-extension (Packed DSP/SIMD) TG
 - Co-chair of Fast Interrupt TG
 - Preparing the Performance Tools TG
AndeStar™ V5 Processor Lineup

<table>
<thead>
<tr>
<th>Cache-Coherent Multicores</th>
<th>A25MP<sup>a</sup></th>
<th>AX25MP<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/2/4 A25, L2$, L1/IO coherence</td>
<td>1/2/4 AX25, L2$, L1/IO Coherence</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Linux with FPU/DSP</th>
<th>A25</th>
<th>AX25</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N25F, MMU, DSP</td>
<td>NX25F, MMU, DSP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fast/Compact with FPU/DSP</th>
<th>N25F/D25F</th>
<th>NX25F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V5/32b, FPU, PMP, DSP (D25F)</td>
<td>V5/64b, FPU, PMP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Slim and Efficient</th>
<th>N22</th>
<th>D22(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V5[e]/32b, 32/16 GPR</td>
<td>N22, DSP, FPU</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>AX25MP<sup>a</sup></th>
<th>N22</th>
<th>D22(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-stage, A C E, >1.2GHz</td>
<td>2-stage, 800 MHz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- A(X)25MP: available Q2/2019
- 28HPC+ RVT, SS, 0.81V, 0C, with I/O constraints.

Taking RISC-V® Mainstream
AndeStar™ V5 Processors

<table>
<thead>
<tr>
<th>Cores1</th>
<th>AndeStar™ ISA2</th>
<th>GPR bits</th>
<th>Priv. levels</th>
<th>Intr. Ctrlr</th>
<th>MMU</th>
<th>I/D$</th>
<th>ECC</th>
<th>FPU3</th>
<th>DSP (P)</th>
<th>ACE3</th>
<th>MP</th>
</tr>
</thead>
<tbody>
<tr>
<td>N22</td>
<td>V5/V5e</td>
<td>32</td>
<td>M+U</td>
<td>CLIC</td>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N25(F)</td>
<td>V5</td>
<td>32</td>
<td>M+U</td>
<td>PLIC</td>
<td>I/D</td>
<td>✓</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D25F</td>
<td>V5</td>
<td>32</td>
<td>M+U</td>
<td>PLIC</td>
<td>I/D</td>
<td>✓</td>
<td>#</td>
<td>✓</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A25</td>
<td>V5</td>
<td>32</td>
<td>M+U+S</td>
<td>PLIC</td>
<td>✓</td>
<td>I/D</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>A25MP</td>
<td>V5</td>
<td>32</td>
<td>M+U+S</td>
<td>PLIC</td>
<td>✓</td>
<td>I/D</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>#</td>
<td>✓</td>
</tr>
<tr>
<td>NX25(F)</td>
<td>V5</td>
<td>64</td>
<td>M+U</td>
<td>PLIC</td>
<td>I/D</td>
<td>✓</td>
<td>#</td>
<td>#</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AX25</td>
<td>V5</td>
<td>64</td>
<td>M+U+S</td>
<td>PLIC</td>
<td>✓</td>
<td>I/D</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>#</td>
<td></td>
</tr>
<tr>
<td>AX25MP</td>
<td>V5</td>
<td>64</td>
<td>M+U+S</td>
<td>PLIC</td>
<td>✓</td>
<td>I/D</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>#</td>
<td>✓</td>
</tr>
</tbody>
</table>

1. Common features: PMP, branch prediction, CoDense™, PowerBrake, StackSafe™
2. V5: RV*IMAC + Andes Extensions, V5e: RV*EMAC + Andes Extensions
3. ✓: included; #: separately licensable
V5: Best Extensions to RISC-V

AndeStar V5: RISC-V + Andes Extensions

- **Baseline ISA extensions:**
 - Faster memory accesses
 - Faster branches
 - More compact code on top of RV-C

- **Andes Custom Extension™ (ACE) frameworks for DSA**
 - Powerful tools
 - No CPU design experience needed

- **PLIC extension:**
 - Vectored dispatch
 - Priority-based preemption
 - Save >50% of instructions

- **Cache Support:**
 - Management operations (flush, invalidate, etc.) at the line level
 - Uncached accesses
 - Write-back and write-through

- **StackSafe™:** Stack protection mechanism
- **QuickNap™:** Fast power-down/wake-up support for caches
- **PowerBrake:** Digital power throttling
AndesCore™ 22-Series
Ultra Compact and Low Power
AndesCore 22-Series

- Ultra compact and low power
- AndeStar V5 or V5e ISA
 - RV32-[IE]MC + Andes V5 extension
- 2-stage pipeline, single-issue
- AHB-lite system bus
- WFI/WFE
- Rich baseline options:
 - PMP: up to 16 entries
 - M-mode, or M+U-mode
 - Multiplier: fast or small (1 or 17 cycles)
 - Branch prediction: static or dynamic
 - I/D Local Memory: 1KB to 512MB
 - I Cache: 1KB to 32KB; direct-map or 2-way
 - HW-handled misaligned load/store
Rich baseline options: (cont.)

- **Core-Local Interrupt Controller (CLIC)**
 - >1000 sources, 255 priority levels
 - Selective vectoring with priority preemption
 - Efficient SW-based tail chaining

- **Platform-Level Interrupt Controller (PLIC)**
 - For interrupts shared among multiple cores
 - >1000 sources, 255 priorities levels

- **Additional buses for SoC flexibility:**
 - APB private peripheral port
 - Fast IO port with 1-cycle latency

- **JTAG debug module**
 - up to 8 triggers (breakpoints/watchpoints)
 - 2-wire or 4-wire support

Advanced features under development

AndesCore 22-Series

- **PLIC**
 - Interrupt Intf.

- **PMU**
 - WFI/WFE

- **Debug**
 - HW Bkpt

- **N22 uCore, PMP**

- **ACE**

- **DSP**

- **FPU**

- **ICache**

- **Mul/Div**

- **Br. Pred**

- **ILM**

- **BIU**

- **DLM**

- **SRAM/AHBL**

- **AHBL/APB/FIO**

- **SRAM/AHBL**

Taking RISC-V® Mainstream
N22 Performance

At 28nm
- Highest frequency (worst case): up to 800MHz
- Minimal gate count: <15K gates
- Best scores: 3.95 Coremark/MHz, 1.80 DMIPS/MHz (no-inline)

<table>
<thead>
<tr>
<th>CPU Cores</th>
<th>CPU A</th>
<th>N22 (full config)</th>
<th>CPU B</th>
<th>N22 (small config)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISA</td>
<td>V7m</td>
<td>Andes V5</td>
<td>V6m</td>
<td>Andes V5e</td>
</tr>
<tr>
<td>CoreMark/MHz</td>
<td>3.34</td>
<td>3.95 (+18%)</td>
<td>2.46</td>
<td>3.06 (24%)</td>
</tr>
<tr>
<td>DMIPS/MHz (no-inline)</td>
<td>1.25</td>
<td>1.80 (+44%)</td>
<td>0.95</td>
<td>1.46 (+54%)</td>
</tr>
<tr>
<td>CSiBE Code Size (KB)</td>
<td>1,330</td>
<td>1,185 (-13%)</td>
<td>1,315</td>
<td>1,305 (-1%)</td>
</tr>
</tbody>
</table>
AndesCore™ 25-Series
With DSP Capabilities
(D25F/A25/A25MP, AX25/AX25MP)
25-Series Overview

- **Smallest usable N25/NX25 @28nm:**
 - N25 @ 1 GHz: 37K, 4.1 uW/MHz
 - NX25@ 1 GHz: 56K, 6.0 uW/MHz

<table>
<thead>
<tr>
<th>Features</th>
<th>N*25</th>
<th>N*25F</th>
<th>A*25</th>
</tr>
</thead>
<tbody>
<tr>
<td>32KB I$/D$ + 256 BTB</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>SP/DP FPU</td>
<td>--</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>MMU and S-Mode</td>
<td>--</td>
<td>--</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- **Worst-Case Freq. (GHz)**
 - N25: 1.4 GHz
 - NX25: 1.3 GHz
 - A*25: 1.2 GHz

- **Coremark/MHz**
 - N25: 3.58 (rv32), 3.52 (rv64)

- **DMIPS/MHz (no-inline)**
 - N25: 1.96 (rv32), 2.09 (rv64)

- **First implementations of P-Ext draft**

1: 28HPC+ RVT 9T library and high-speed memory. Frequency at 0.81v/-40°C.
2: BSP V5.0.0 toolchain; DMIPS/ground rule uses no-inline option.

Taking RISC-V® Mainstream
Examples of DSP/SIMD Instructions

<table>
<thead>
<tr>
<th>Types</th>
<th>Instruction Operations</th>
<th>Cycles</th>
</tr>
</thead>
</table>
| **SIMD** | Four 8x8 multiplications:
 16= 8x8; 16= 8x8; 16= 8x8; 16= 8x8
 Two 16x16 multiplications:
 32= 16x16; 32= 16x16 | 1 |
| **Partial SIMD** | Four 8x8 multiplications with 32b accumulation:
 32= 32 + 8x8 + 8x8 + 8x8 + 8x8 + 8x8;
 32= 32 + 8x8 + 8x8 + 8x8 + 8x8 + 8x8 (2nd op: RV64 only)
 Two 16x16 multiplications with 32b accumulation:
 32= 32 + 16x16 + 16x16
 32= 32 + 16x16 + 16x16 (2nd op: RV64 only) | 2 |
| **RV64 Only** | Two 32x32 multiplications with 64b accumulation:
 64= 64 + 32x32 + 32x32 | 3 |
Speedup with P-Ext on 25-Series

DSP libraries for RV32-P (>200 functions in 8 categories)

<table>
<thead>
<tr>
<th>Speedup</th>
<th>Basic</th>
<th>Cmplx</th>
<th>Ctrl</th>
<th>Filter</th>
<th>Matrix</th>
<th>Ststcs</th>
<th>Xform</th>
<th>Utils</th>
<th>ALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVG</td>
<td>2.40</td>
<td>1.62</td>
<td>1.84</td>
<td>2.26</td>
<td>1.62</td>
<td>2.44</td>
<td>1.29</td>
<td>1.08</td>
<td>1.82</td>
</tr>
<tr>
<td>MAX</td>
<td>5.16</td>
<td>4.09</td>
<td>2.13</td>
<td>4.11</td>
<td>2.75</td>
<td>4.39</td>
<td>1.78</td>
<td>1.43</td>
<td>5.16</td>
</tr>
</tbody>
</table>

DSP libraries for RV64-P (>200 functions in 8 categories)

<table>
<thead>
<tr>
<th>Speedup</th>
<th>Basic</th>
<th>Cmplx</th>
<th>Ctrl</th>
<th>Filter</th>
<th>Matrix</th>
<th>Ststcs</th>
<th>Xform</th>
<th>Utils</th>
<th>ALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVG</td>
<td>4.73</td>
<td>1.92</td>
<td>1.31</td>
<td>2.41</td>
<td>3.04</td>
<td>4.14</td>
<td>1.28</td>
<td>1.19</td>
<td>2.50</td>
</tr>
<tr>
<td>MAX</td>
<td>10.81</td>
<td>4.14</td>
<td>1.59</td>
<td>5.04</td>
<td>6.83</td>
<td>8.51</td>
<td>1.67</td>
<td>2.72</td>
<td>10.81</td>
</tr>
</tbody>
</table>

Speedups for various applications

<table>
<thead>
<tr>
<th>Cores</th>
<th>RV64-P</th>
<th>RV32-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>APP</td>
<td>CIFAR10 (image classification)</td>
<td>PNET (90% of face detection)</td>
</tr>
<tr>
<td>Speedup</td>
<td>10.99</td>
<td>7.57</td>
</tr>
</tbody>
</table>
AndesCore™ A(X)25MP: Multicores with Cache Coherence
A(X)25MP: Cache-Coherent Multicore

AndesCore™
A25MP/AX25MP Multicore

Platform-Level Interrupt Controller

Debug Support

Bus Master Interface (AXI-128)

1~4 A25/AX25 CPUs:
- RV-IMACFD ISA + V5 extensions
- P-extension draft
- Supporting SMP Linux

Bus Interfaces
- LM slave port
- Coherence slave port
- AXI bus master interface
 - N:1 synchronous clock ratio

PLIC for interrupt handling
Debug/trace support
A(X)25MP: Cache-Coherent Multicore

AndesCore™ A25MP/AX25MP Multicore

- **ACU Coherence Unit**
 - MESI cache coherence protocol
 - Duplicate L1 dcache tags
 - IO coherence for cacheless masters

- **L2$ Controller (optional)**
 - Size: 128KB to 2MB
 - Line size: 32B
 - **16-way** with pseudo random replacement and writeback

- **SRAM optimization**:
 - SRAM access cycles: ≥ 2 (configurable)
 - Bank interleaving:
 - 2 tag banks, 8 data banks
 - Fully pipelined without contention

Components

- **Platform-Level Interrupt Controller**
- **Debug Support**
- **ACU Engine/ L2 Cache Controller**
- **Bus Master Interface (AXI-128)**

- **IRQ’s**
- **JTAG**
- **Trace Port (x4)**
- **I/D LM Slave Port (AHB-32/64 x4)**
- **Coherence Slave Port (AXI-64)**

Taking RISC-V® Mainstream
A(X)25MP: Cache-Coherent Multicore

- **L2$ Controller (cont.)**
 - Writeback/invalidate control
 - **ECC protection** (SECDED): same as that for L1 memory

- **Prefetching**
 - Instruction: 1/2/3 lines after a miss
 - Data: 2/4/8 lines after consecutive linear misses (tracking 8 address sequences)

- **Linux-capable configuration**
 - RV64, 32KB I/D$, 256-entry BTB, 128-entry STLB, 8-entry PMP
 - ~1 GHz at 28nm (worst case)
 - Size (gate count):
 - Core: >200K, ACU+L2: <200K

AndesCore™ A25MP/AX25MP Multicore

- **Platform-Level Interrupt Controller**
- **Debug Support**
- **ACU Engine/ L2 Cache Controller**

 - **A25/AX25**
 - ILM, DLM
 - I$, D$

 - **A25/AX25**
 - ILM, DLM
 - I$, D$

Bus Master Interface (AXI-128)

- **IRQ's**
- **JTAG**
- **Trace Port (x4)**
- **I/D LM Slave Port (AHB-32/64 x4)**
- **Coherence Slave Port (AXI-64)**
Concluding Remarks

- Andes is working hard to catch up RISC-V demands

- Our offerings:
 - 22-series: ultra compact and low power cores
 - 25-series: fast and full-featured with Linux SMP supports
 - DSP ISA for the emerging needs for built-in efficient data processing
 - Andes Custom Extension™ for growing demands for DSA
 - Strong development tools and SW support from Andes and partners

- Diversified applications:
 - AI, FPGA, IoT, MCU, Security, Storage, Wireless

Andes: Trusted Computing Expert and Your Best RISC-V Partner!
Thank You !!
AndeStar™ V5 Processor Lineup

<table>
<thead>
<tr>
<th>Cache-Coherent Multicores</th>
<th>A25MP<sup>a</sup></th>
<th>AX25MP<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/2/4 A25, L2$, L1/IO coherence</td>
<td>1/2/4 AX25, L2$, L1/IO Coherence</td>
</tr>
<tr>
<td>Linux with FPU/DSP</td>
<td>A25</td>
<td>AX25</td>
</tr>
<tr>
<td></td>
<td>N25F, MMU, DSP</td>
<td>NX25F, MMU, DSP</td>
</tr>
<tr>
<td>Fast/Compact with FPU/DSP</td>
<td>N25F/D25F</td>
<td>NX25F</td>
</tr>
<tr>
<td></td>
<td>V5/32b, FPU, PMP, DSP (D25F)</td>
<td>V5/64b, FPU, PMP</td>
</tr>
<tr>
<td>Slim and Efficient</td>
<td>N22</td>
<td>D22(F)</td>
</tr>
<tr>
<td></td>
<td>V5[e]/32b, 32/16 GPR</td>
<td>N22, DSP, FPU</td>
</tr>
</tbody>
</table>

- **A(X)25MP**: available Q2/2019; b. 28HPC+ RVT, SS, 0.81V, 0C, with I/O constraints.
- **LM/Caches, Branch Pred, Vec. Intpt**: 5-stage, A CE, >1.2GHz, 2-stage, 800 MHz

Taking RISC-V® Mainstream