PULP-NN: Open-Source Library for QNNs Inference on RISC-V Based PULP Cluster

RISC-V Workshop, Zürich 11.06.2019

Angelo Garofalo¹, Manuele Rusci¹, Francesco Conti¹,²,
angelo.garofalo@unibo.it, manuele.rusci@unibo.it, f.conti@unibo.it

Davide Rossi¹, Luca Benini¹,²,
davide.rossi@unibo.it, luca.benini@unibo.it

¹Department of Electrical, Electronic and Information Engineering
²Integrated Systems Laboratory
Embedded Machine Learning (Deep Learning)

IoT demands for more Embedded Intelligence

Issue: Trade-off the high computational and memory requirements of ML (DL) with strongly constrained IoT end-nodes

DNN Model, Quantization, pruning & Hardware/Software optimizations

Low latency
Efficient use of network bandwidth
Less power
Reduce Cost
Privacy
Reliability

THE INTERNET OF THINGS
AN EXPLOSION OF CONNECTED POSSIBILITIES

Low latency
Efficient use of network bandwidth
Less power
Reduce Cost
Privacy
Reliability
HW: IoT-Edge MCUs

Low voltage operation + Multicore cluster & Extended RISC-V ISA
• 8 RISC-V cores
• 4 stage single-issue in order pipeline
• 64kB, 16 banks shared L1 memory (TCDM)
• Log interconnect to manage parallel access to TCDM
• HW synchronization block (efficient parallelization)

RISC-V: Xpulp ISA extension

• Loop: Hw loop, LD/ST with post-increment
• Linear Algebra: single cycle MAC insns;
• DSP: 8-bit and 16-bit SIMD instructions
• Bit Manipulation: single cycle insert/extract
ARM CMSIS-NN

Open-Source Software library for QNN inference at the Edge

8-bit and **16-bit** Fixed-point quantized weights and activations

Height-Width-Channel (HWC)

Data Layout

Matrix multiplication (GEMM)

based implementation of convolution and linear kernels

SW: QNN inference on RISC-V PULP clusters

PULP-NN: Based on CMSIS-NN data layout

Target: **RV32IMCXpulp** Parallel Ultra-Low-Power Cluster

8-bit fixed-point network weights and pixels

- < 5% of accuracy loss w.r.t. 32-bit floating point (*)
- Supported by SIMD Xpulp instructions

PULP-NN: Xpulp ISA exploitation

8-bit Convolution

- **RV32IMC**
 - addi a0, a0, 1
 - addi t1, t1, 1
 - addi t3, t3, 1
 - addi t4, t4, 1
 - lbu a7, -1(a0)
 - lbu a6, -1(t4)
 - lbu a5, -1(t3)
 - lbu t5, -1(t1)
 - mul s1, a7, a6
 - mul a7, a7, a5
 - add s0, s0, s1
 - mul a6, a6, t5
 - add t0, t0, a7
 - mul a5, a5, t5
 - add t2, t2, a6
 - add t6, t6, a5
 - bne s5, a0, 1c000bc

- **RV32IMCXpulp**
 - lp.setups
 - p.lw w1, 4(a0!)
 - p.lw w2, 4(a1!)
 - p.lw x1, 4(a2!)
 - p.lw x2, 4(a3!)
 - pv.sdotsp.b s1, w1, x1
 - pv.sdotsp.b s2, w1, x2
 - pv.sdotsp.b s3, w2, x1
 - pv.sdotsp.b s4, w2, x2
 - end

- **HW Loop**
- **LD/ST with post increment**
- **8-bit SIMD sdotp**

- **Pooling & ReLu**
 - HW loop
 - LD/ST with post-increment
 - 8-bit SIMD max, avg INSNS

9x less instructions than RV32IMC
PULP-NN: Exploring Data Reuse in the Register File

CMSIS-NN based Matrix Multiplication Layout: 2x2

\[
\begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix} \times
\begin{bmatrix}
 w_1 \\
 w_2
\end{bmatrix} =
\begin{bmatrix}
 S_1 \\
 S_2 \\
 S_3 \\
 S_4
\end{bmatrix}
\]

RegisterFile of the RI5CY core: 32 general purpose registers

PULP-NN Matrix Multiplication Layout: 4x2

\[
\begin{bmatrix}
 x_1 \\
 x_2
\end{bmatrix} \times
\begin{bmatrix}
 w_1 \\
 w_2 \\
 w_3 \\
 w_4
\end{bmatrix} =
\begin{bmatrix}
 S_1 \\
 S_2 \\
 S_3 \\
 S_4 \\
 S_5 \\
 S_6 \\
 S_7 \\
 S_8
\end{bmatrix}
\]

More Data Reuse & Higher utilization of the RF

8-bit Convolution

2x2: 43\% utilization

4x2: 69\% utilization

Peak Performance (8 cores)

2x2: 12.8 MAC/cyc

4x2: 15.5 MAC/cyc
Results: RV32IMCXpulp vs RV32IMC

8-bit Convolution Results

- Overall Speedup of 75x

- PULP-NN relies on Xpulp:
 - 8-bit SIMD ISA support
 - Zero-overhead Loop
 - LD/ST with post-increment
 - Parallelism
 - 32 32-bit registers in RF

-Ideal Speedup

- NEAR-LINEAR SPEEDUP

Speedup w.r.t. RV32IMC

- ISA does matter

- 10x Speedup w.r.t. RV32IMC
Experimental Setup: 8-bit QNN trained on CIFAR-10

32x32 RGB image → 32x32x32 → 16x16x32 → 16x16x32 → 8x8x32 → 8x8x64 → 4x4x64 → 10 output classes

CMSIS-NN
- STM32L4 (90 nm)
- ARM Cortex-M4

PULP-NN
- STM32H7 (40 nm)
- ARM Cortex-M7
- GAP-8 (55 nm)
- PULP architecture

https://github.com/ARM-software/MLexamples/tree/master/cmsisnn-cifar10
Performance and energy efficiency on commercial MCUs

LATENCY

- GAP8: 30x
- STM32L4 Cortex-M4: 19.6x
- STM32H7 Cortex-M7

PERFORMANCE

- GAP8 170 Mhz (1.2 V): 36.8x
- GAP8 90 Mhz (1 V): 7.45x
- STM32L4 80 Mhz: 32.05x
- STM32H7 400 Mhz: 4.06x

ENERGY EFFICIENCY

- GAP8 170 Mhz (1.2 V): 14.1x
- GAP8 90 Mhz (1 V): 39.5x
- STM32L4 80 Mhz: 9.48x
- STM32H7 400 Mhz: 16.6x
Conclusion

- **PULP-NN**: Optimized library for QNN inference on PULP Clusters;
- By exploiting Xpulp we achieve a Speedup of **10x** (clock cycles) with respect to RV32IMC implementation;
- By exploiting fully the PULP cluster the Speedup increases up to **75x** (clock cycles) with respect to RV32IMC;
- Inferring a CIFAR-10 QNN on GAP-8 running PULP-NN, we achieve **7.45x** higher performance and up to **39.5x** better energy efficiency with respect to a high-end Cortex-M7 processor running CMSIS-NN;
- Also we achieve **14.1x** better energy-efficiency with respect to a low-end Cortex-M4 processor.

Resources:

https://github.com/pulp-platform/pulp-nn

https://github.com/pulp-platform/pulp