An Open Source Approach to System Security

Helena Handschuh, RISCV Security Standing Committee Chair

RISCV Workshop, @ Zurich 06/12/2019
Why do we need an open source approach?

• sharing specifications with peers can advance development faster
• testing is more effective ;
• Compliance is critical to build up an ecosystem
• Interoperability
• No security by obscurity
• Open formal models allow to test for security issues
• Formalizing the security test tools and development tools
• Make tools available to entire community
• Reason on security models and functionality
Embedded System Security

→ Ways that the RISC-V Foundation and its Security Committees can help designers of secure cores.
 • Let’s start with a clean slate: RISCV open specifications

 • Secure Processor Ingredients...
 • RISCV base Instruction Set Architecture (ratified)
 • Privilege specification defining privilege modes (Machine, Supervisor, Hypervisor, User)
 • Security Extensions
 • Crypto extensions (Richard Newell, Microchip) and a Trusted Execution Environment TG (Joe Xie, Nvidia)

 • Allow to define Secure Processing:
 • Secure boot process
 • Cryptographic algorithms and keys
 • Trusted Execution Environment
 • Secure applications
 • Secure User API
RISCV Foundation Task Groups relating to Security

Crypto extensions Task Group
• Approach based on vector extensions
• AES instructions (1 round, full round)
• SHA-2 instructions (1 round, full round)
• Prototyping Public Key Crypto algorithms
 • Long integer arithmetic
 • Implementation proof of concept

TEE Task Group
• Secure boot specifications proposal
• PMP Physical Memory Protection proposal
• IO PMP proposal
• …
Security measures can benefit from an open approach

• Newer cache timing side-channels result from micro-architectural design flaws
• Cannot be directly fixed/eliminated at the ISA level but:
• Generic solutions can be added into RISCV based platform specifications
 • All internal resources should be either flushable or separable (AISA)
 • For example platform specific Flush instructions can be added
 • Access permissions can be defined to separate cache space, memory spaces

• Security Standing committee discussing how to add to platform specs
 • Galois taking the lead: demonstrating first platform specs for a secure voting machine @ Defcon
 • Gernot Heiser Data61 closely following with platform specs based on SeL4
Taxonomy and Formal reasoning (Galois, SSITH projects)

• “Lando” : a formal specification for HW design with 4 sublanguages:
 • A system spec language
 • Architecture language
 • Product line engineering language
 • Security property specification language
• A domain model for specifying security properties.
 • formalization of the NIST CWEs related to buffer/memory errors
• BESSPIN: a tool suite for formal reasoning
 • GRIFT: subsystem of tool suite contributed to RISCV Formal Specs TG
• Platform specs and security-enriched ISA:
 • Secure voting machine platform spec includes security properties/guarantees
 • 6 other platform specs based on RISCV SoCs (Rocket, Boom, Piccolo, Flute, Bassoon, Riscy)
Still lots of work to BE doNE...

Come join our RISCV Foundation Security Committees

Thank you!