

Recruiting for the Long Overdue and

Deserved Demise of Dhrystone

Embench™: An Evolving Benchmark Suite

for Embedded IoT Computers from an

Academic-Industrial Cooperative

Jeremy Bennett (Embecosm), Palmer Dabbelt (SiFive),

Cesare Garlati (Hex Five Security),

G. S. Madhusudan (India Institute of Technology Madras),

Trevor Mudge (University of Michigan), and

David Patterson (University of California Berkeley)

June 12, 2019

(+ Bonus Announcement at End of Talk)

State of Benchmarks for IoT/Embedded Computers

● Billions of Internet of Things (IoT) devices shipped soon

● Still no high quality, widely reported benchmark for embedded computers

Yunsup Lee, SiFive CTO, Keynote address

“Opportunities and Challenges of Building

Silicon in the Cloud” 12/5/18 RISC-V Summit:

 “... the benchmark scores are 4.9 CoreMarks/

MHz and 2.5 DMIPS/MHz. I’m saying this in

front of Dave [Patterson], who doesn’t really

like Dhrystone or CoreMark as benchmarks.

Sorry. This is the industry standard benchmark

I learned.”

It’s past time to apologize; let’s fix!
2

Learning from Benchmark History

● Incorporate good ideas and avoid mistakes of past benchmarks

● First learn from features of widely quoted benchmarks:

3

Learning from Benchmark History

● Incorporate good ideas and avoid mistakes of past benchmarks

● First learn from features of widely quoted benchmarks:
Linpack Dhrystone SPEC CPU CoreMark MLPerf 0.5

Year 1977 1984 1989 2009 2018

Initial Target Supercomputer
Systems

programming
Unix

Server
Embedded

Server
(ML training)

Type Library Synthetic Applications Synthetic Applications

Learning from Benchmark History

● Incorporate good ideas and avoid mistakes of past benchmarks

● First learn from features of widely quoted benchmarks:
Linpack Dhrystone SPEC CPU CoreMark MLPerf 0.5

Year 1977 1984 1989 2009 2018

Initial Target Supercomputer
Systems

programming
Unix

Server
Embedded

Server
(ML training)

Type Library Synthetic Applications Synthetic Applications
Quality Reputation Low Low High Low High

Learning from Benchmark History

● Incorporate good ideas and avoid mistakes of past benchmarks

● First learn from features of widely quoted benchmarks:
Linpack Dhrystone SPEC CPU CoreMark MLPerf 0.5

Year 1977 1984 1989 2009 2018

Initial Target Supercomputer
Systems

programming
Unix

Server
Embedded

Server
(ML training)

Type Library Synthetic Applications Synthetic Applications
Quality Reputation Low Low High Low High
Free (no cost) ✓ ✓ $1000 ($250 academia) ✓ ✓

Learning from Benchmark History

● Incorporate good ideas and avoid mistakes of past benchmarks

● First learn from features of widely quoted benchmarks:
Linpack Dhrystone SPEC CPU CoreMark MLPerf 0.5

Year 1977 1984 1989 2009 2018

Initial Target Supercomputer
Systems

programming
Unix

Server
Embedded

Server
(ML training)

Type Library Synthetic Applications Synthetic Applications
Quality Reputation Low Low High Low High
Free (no cost) ✓ ✓ $1000 ($250 academia) ✓ ✓
Easy to Port ✓ ✓ ✓ ✓

Learning from Benchmark History

● Incorporate good ideas and avoid mistakes of past benchmarks

● First learn from features of widely quoted benchmarks:
Linpack Dhrystone SPEC CPU CoreMark MLPerf 0.5

Year 1977 1984 1989 2009 2018

Initial Target Supercomputer
Systems

programming
Unix

Server
Embedded

Server
(ML training)

Type Library Synthetic Applications Synthetic Applications
Quality Reputation Low Low High Low High
Free (no cost) ✓ ✓ $1000 ($250 academia) ✓ ✓
Easy to Port ✓ ✓ ✓ ✓
Revision Frequency None since 1991 None since 1988 3 years Never 1 year (planned)

Learning from Benchmark History

● Incorporate good ideas and avoid mistakes of past benchmarks

● First learn from features of widely quoted benchmarks:
Linpack Dhrystone SPEC CPU CoreMark MLPerf 0.5

Year 1977 1984 1989 2009 2018

Initial Target Supercomputer
Systems

programming
Unix

Server
Embedded

Server
(ML training)

Type Library Synthetic Applications Synthetic Applications
Quality Reputation Low Low High Low High
Free (no cost) ✓ ✓ $1000 ($250 academia) ✓ ✓
Easy to Port ✓ ✓ ✓ ✓
Revision Frequency None since 1991 None since 1988 3 years Never 1 year (planned)
Number of Programs 1 1 10 SPEC89 - 23 SPEC2017 1 7

SPEC

Benchmark

History:

SPEC89 -

SPEC2017

Fig 1.17, Computer

Architecture: A

Quantitative Approach,

6th Edition, 2018

All 82 programs from 6

SPEC generations

Only 3 integer programs

and 3 FP programs

survived ≥ 3 generations

Learning from Benchmark History

● Incorporate good ideas and avoid mistakes of past benchmarks

● First learn from features of widely quoted benchmarks:
Linpack Dhrystone SPEC CPU CoreMark MLPerf 0.5

Year 1977 1984 1989 2009 2018

Initial Target Supercomputer
Systems

programming
Unix

Server
Embedded

Server
(ML training)

Type Library Synthetic Applications Synthetic Applications
Quality Reputation Low Low High Low High
Free (no cost) ✓ ✓ $1000 ($250 academia) ✓ ✓
Easy to Port ✓ ✓ ✓ ✓
Revision Frequency None since 1991 None since 1988 3 years Never 1 year (planned)
Number of Programs 1 1 10 SPEC89 - 23 SPEC2017 1 7
Organization to
Evolve Benchmark

✓ ✓ ✓ ✓

Learning from Benchmark History

● Incorporate good ideas and avoid mistakes of past benchmarks

● First learn from features of widely quoted benchmarks:
Linpack Dhrystone SPEC CPU CoreMark MLPerf 0.5

Year 1977 1984 1989 2009 2018

Initial Target Supercomputer
Systems

programming
Unix

Server
Embedded

Server
(ML training)

Type Library Synthetic Applications Synthetic Applications
Quality Reputation Low Low High Low High
Free (no cost) ✓ ✓ $1000 ($250 academia) ✓ ✓
Easy to Port ✓ ✓ ✓ ✓
Revision Frequency None since 1991 None since 1988 3 years Never 1 year (planned)
Number of Programs 1 1 10 SPEC89 - 23 SPEC2017 1 7
Organization to
Evolve Benchmark

✓ ✓ ✓ ✓

Single Summary
Score

FLOPS/second Speed Ratio
Geometric Mean Speed

Ratios
Speed Ratio

Weighted Mean Ratios
+ Std. Dev.

Learning from Benchmark History

● Incorporate good ideas and avoid mistakes of past benchmarks

● First learn from features of widely quoted benchmarks:
Linpack Dhrystone SPEC CPU CoreMark MLPerf 0.5

Year 1977 1984 1989 2009 2018

Initial Target Supercomputer
Systems

programming
Unix

Server
Embedded

Server
(ML training)

Type Library Synthetic Applications Synthetic Applications
Quality Reputation Low Low High Low High
Free (no cost) ✓ ✓ $1000 ($250 academia) ✓ ✓
Easy to Port ✓ ✓ ✓ ✓
Revision Frequency None since 1991 None since 1988 3 years Never 1 year (planned)
Number of Programs 1 1 10 SPEC89 - 23 SPEC2017 1 7
Organization to
Evolve Benchmark

✓ ✓ ✓ ✓

Single Summary
Score

FLOPS/second Speed Ratio
Geometric Mean Speed

Ratios
Speed Ratio

Weighted Mean Ratios
+ Std. Dev.

Developer Academia Academia Academia & Industry Industry Academia & Industry

Learning from Benchmark History (cont’d)

● Incorporate good ideas and avoid mistakes of past benchmarks

● Next learn from features of not widely quoted benchmarks that

are candidates for embedded computing:

EEMBC MiBench BEEBS TACLeBench
Year 1997 2001 2013 2016
Initial Target Embedded Embedded Compiler Worst Case Execution

Type
Small

Programs
Small

Programs
Small Programs Small Programs

Quality Reputation ? ? ? ?
Free $20,000 ✓ ✓ ✓
Easy to Port No ✓ ✓ ✓
Organization to Evolve Benchmark ✓ No No No
Number of Programs 41 36 80 52
Iteration Rate Rare Never 2 years Never
Single Summary Score No No No No
Developer Industry Academia Academia & Industry Academia

7 Lessons for Embench

(Embedded Benchmark)
1. Embench must be free

a. If behind paywall, not going to be as widely used
b. Academics publish frequently and can promote the use of benchmarks, so free accelerates their

adoption and hence publicizes benchmarks to the rest of the community

2. Embench must be easy to port and run
a. If very difficult or expensive to port and run, then not as widely used
b. Linpack, Dhystone, and CoreMark don’t have good reputations yet widely reported presumably because

they are free and easy to port and run

3. Embench must be a suite of real programs
a. Real programs are much likely to be representative than synthetic programs
b. A realistic workload is easier to represent as a suite of programs than as a single program
c. Compilers and hardware change rapidly, so benchmarks need to evolve over time to deprecate pieces

that are newly irrelevant and add missing features that speak to current challenge
d. A single program is hard to evolve
e. A suite of ≈20 real programs means a more realistic workload that is much easier to evolve

15

7 Lessons for Embench (cont’d)

4. Embench must have a supporting organization
that maintains its relevance over time

a. Need an organization to evolve suite over time
b. Goal of refreshes every two years once we get to Embench 1.0
c. Set up inside an existing organization, such as the CHIPS Alliance or the Free and Open Source Silicon

(FOSSi) Foundation, rather than create a new org

5. Embench must report a single summarizing performance score
a. If no official single performance score, then it won’t be as widely reported
b. Even worse, others may supply unofficial summaries that are either misleading or conflicting
c. Might include orthogonal measures, like code size or power; each would have a summarizing score

6. Embench should use geometric mean and standard deviation to summarize
a. Recommend first calculating the ratios of performance relative to a reference platform
b. Report geometric mean (GM) of ratios + geometric standard deviation (GSD)

7. Embench must involve both academia and industry
a. Academia helps maintain fair benchmarks for the whole field
b. Industry helps ensure that programs genuinely important in the real world
c. We need both communities participating to succeed

16

Follow the MLPerf Game Plan?

● ML had no widely adopted benchmarks in 2017

● Small group of ML academics and practitioners

started meeting January 2018
○ Representing 3 universities and 2 companies

● Rapid iterations by small group meeting face-to-face could hash out foundation

of benchmarks for Machine Learning

● May 2018 call for participation to fully define and evolve ML benchmarks* †

○ Grew to 7 universities and 39 companies

○ MLPerf Training 0.5 deadline November 2018; MLPerf Training 0.6 deadline May 2019

○ MLPerf Inference 0.5 deadline July 2019

● In less than 18 months, MLPerf became a well established benchmark

*Patterson, D., G. Diamos, C. Young, P. Mattson, P. Bailis, G.-Y. Wei., May 2, 2018, MLPerf: A benchmark

suite for machine learning from an academic-industry cooperative. O’Reilly Artificial Intelligence Conference.
†Young, C., May 3, 2018. Why Machine Learning Needs Benchmarks. Computer Architecture Today blog.

17

First volunteer Opportunity: Pick Embench logo!

tiny.cc/Embench

Follow the Agile Benchmark Philosophy of MLPerf

● Make an initial version 0.5

● Then collect experience and

feedback before making more

ambitious version

● Like MLPerf, we expect to go through

Embench 0.6, 0.7, …

● Until we have refined a version

good enough to call Embench 1.0

19

Embedded Target for Embench 0.5

● Embench 0.5 targets small devices:

Flash (ROM) ≤64 KiB, RAM ≤16 KiB

● May expand to larger devices in

later iterations, but small devices

for Embench 0.5

20

Candidate Programs for Embench 0.5

● Expected finding good 20 candidates would be difficult

● But past efforts at embedded benchmarks

(MiBench, BEEBS, TACleBench, ...) have made many

free and open programs that are easy to port and run

● Chose BEEBS (Bristol/Embecosm Embedded Benchmark Suite) because
○ It involved both academia and industry

○ It was a recent effort (2013)

○ It already borrowed good programs from MiBench and many others

● Reduce from 80 BEEBS programs to ≈20 Embench programs after looking at
○ Application categories covered

○ Relative emphasis on computation, memory, and branching

○ Size of the programs

○ Run times
21

Embench 0.5 Candidates

Name Comments
Original
Source

C LOC code size data size
time
(ms)

branch memory compute

aha-mont64 Montgomery multiplication AHA 151 1,052 24 4,000 low low high
crc32 CRC error checking 32b MiBench 101 230 1,024 4,013 high med low
cubic Cubic root solver MiBench 121 2,466 192 4,140 low med med
edn More general filter WCET 285 1,452 1,600 3,984 low high med
huffbench Compress/Decompress Scott Ladd 309 1,628 1,004 4,109 med med med
matmult-int Integer matrix multiply WCET 175 420 1,600 4,020 med med med
minver Matrix inversion WCET 188 1,076 168 4,003 high low med
nbody Satellite N body, large data CLBG 167 708 656 3,774 med low high
nsichneu Large - Petri net WCET 2,676 15,036 8 4,001 med high low
picojpeg JPEG MiBench2 2,182 8,022 1,196 3,748 med med high
qrduino QR codes Github 936 6,056 1,540 4,210 low med med
sglib Simple Generic Library for C SGLIB 1,844 2,316 800 4,028 high high low
slre Regex SLRE 506 2,422 126 3,994 high med med
st Statistics WCET 116 880 64 4,151 med low high
statemate State machine (car window) C-LAB 1,301 3,686 64 4,000 high high low
ud LUD composition Int WCET 95 702 0 4,002 med low high
wikisort Merge sort Github 866 4,208 3268 4,226 med med med

Supplementing BEEBS

● We then discussed the important categories missing from BEEBS and added

the best examples of free and open versions that we could find
○ Could use help with finding good code for elliptic curve DSA and bluetooth le decode

Name Comments
Original
Source

C LOC
code
size

data
size

time branch memory compute

nettle-aes AES encrypt/decrypt Nettle 1,018 2,874 10,546 3,988 med high low
nettle-sha256 SHA256 digest Nettle 349 5,558 520 4,000 low med med

elliptic curve DSA TBD

bluetooth le
decode

Decode Bluetooth low energy
encryption advertising packet

TBD

23

Benchmark Score and

Reference Platform

 ● Summary score is geometric mean (GM)

and geometric standard deviation (GSD)

of performance relative to reference

platform for programs of benchmark suite
○ Ideal reference platform is widely available and well-known

○ GM and GSD guarantee consistent results even if reference

platform changes, as happened with SPEC CPU benchmarks

● We tentatively chose the PULP RI5CY core as the initial reference platform
● Will collect and report results using www.embench.org web site

24

Report Code Size as well as Performance

● Code size is critical for embedded computing
○ Cost of memory for code can be a significant fraction of the

cost of IoT device

● Will also report GM and GSD of code size relative

to reference platform

● 0.9 score means the program is on average 10%

smaller than the reference
○ (We think inverting the metric so that bigger score means

smaller code would be confusing)

● We think code size is necessary for IoT yet novel

to be part of formal benchmark

25

Report Interrupt Latency and Context Switching

Time as well as Performance and Code Size

● Context switch time important for IoT devices
○ Active running low priority task but must switch

quickly to higher priority task

● Interrupt latency important for IoT devices
○ Idle waiting for event to trigger into action

● For Embench 0.5, run a small assembly language program and measure its

performance for switching contexts (rewrite for different ISAs)

● Interrupts will require a lab setup to measure latency

○ Need help to design and document how to setup and run the interrupt

measurements for interrupt latency to be included in Embench 0.5

● We think context switch time and interrupt latency are necessary for IoT yet

novel to be part of formal benchmark

26

Note: No Floating Point (Yet)

● No floating-point intensive programs in

version 0.5 because:

1) Floating point unit (FPU) significantly

accelerates FP programs, but FPUs can

be expensive for IoT chips

2) Many embedded applications do little or no

floating point

● We’ll consider adding a set of floating-point

intensive programs in a later iteration of Embench
○ Might have separate integer and floating ratings,

like SPECint and SPECfp

27

Note: No Power (Yet)

● We rejected power for Embench 0.5 because:

1) SPEC Power has 33-page manual to fairly set

up and measure power, including restrictions on

altitude and room temperature. Which apply to IoT?

2) IoT devices are SoCs vs microprocessors. How compare performance per

watt fairly as SoCs vary in complexity beyond their processors and memory?

3) Will want to test soft cores. How to run power experiment on soft cores?

4) Energy efficiency is often highly correlated with performance. Will results be

interesting even if we did all the work to benchmark IoT power?

28

Example results: GCC RV32, LLVM RV32, GCC RV32E
Reference: PULP

RI5CY/GCC PULP RI5CY/LLVM PULP RI5CY/GCC EABI

Time (ms)
Code size

(Bytes) Time Ratio
Code
size Ratio Time Ratio

Code
size Ratio

aha-mont64 4,000 1,052 5,271 0.70 1,112 1.02 4,799 0.83 1,194 1.13

crc32 4,013 230 4,159 0.96 242 1.06 4,162 0.96 226 0.98

...

Geometric Mean 0.99 1.11 0.92 1.07

Geometric St Dev 1.21 1.11 1.14 1.07

Lower bound of 1 St Dev 0.82 1.00 0.81 1.00

Upper bound of 1 St Dev 1.20 1.23 1.05 1.14

Context switch time -- -- -- -- --

Interrupt latency -- -- -- -- --
29

Call for Participation
(info@embench.org)

● After good start, need and want help

to complete version 0.5 (like MLPerf)

● We’ll hold monthly meetings (including remote participants)

● Hope Embench 0.5 finalized in time to begin collecting and

reporting results before the end of the year (like MLPerf did)

● If you have the time and interest in helping, please send

email to info@embench.org

● 1st chance to help pick Embench logo: tiny.cc/Embench

30

mailto:info@embench.org
mailto:info@embench.org

Embench Conclusion

● Free

● Easy to Port

● Suite of 20 Real Programs (vs 1 Synthetic Program)

● Geometric Mean & Geometric Standard Deviation

of Ratios to Reference Platform

● Also Report Code Size, Context Switch Time, and Interrupt Latency
○ Necessary for embedded IoT devices yet novel part of formal benchmark

● Sustaining Organization involving Academia and Industry to Evolve over Time

● Follows Agile Benchmark Development Philosophy: Versions 0.5, 0.6, …

● Given current state of widely reported benchmarks for embedded computing,

we believe Embench—even the 0.5 version—will be a big help to the IoT field

● We want your help to finish and evolve Embench: info@embench.org

31

RIOS (“Ree-Oss”) Laboratory at

Tsinghua-Berkeley Shenzhen Institute (TBSI)
● RISC-V International Open Source Laboratory

○ 5-year mission to help raise the RISC-V ecosystem to the state-of-the-art (“uncore” IP)

○ A nonprofit organization that measures success by technology transfer

○ Produce industrial strength IP protected against patent lawsuits (e.g., follow expired patents or

papers published 20 years ago): full time staff, access to Berkeley and Tsinghua legal scholars

○ Suggestions or interest: email rios@sz.tsinghua.edu.cn

● TBSI: Tsinghua-Berkeley Shenzhen Institute
○ Tsinghua University and UC Berkeley joint venture located in Shenzhen established 2014

○ Teach RISC-V, open source grad courses at TBSI to create future leaders of technology

● Director: UC Berkeley Professor David Patterson in Berkeley

● Co-Director: Dr. Zhangxi Tan in Shenzhen (Berkeley and Tsinghua alumnus)

● Co-Director: Tsinghua Professor Lin Zhang in Shenzhen

● Distributed lab with majority of ≈50 fulltime engineers at TBSI

● Looking for academic and industrial collaborators 33

34

Patent Troll Proof

Intellectual Property
Rios is Spanish for “rivers”

Rivers name symbolizes collection of

resources from many lands to create a

strong force that changes the landscape,

like RIOS lab at TBSI will do for RISC-V

and information technology landscapes

First volunteer Opportunity: Pick Embench logo!

tiny.cc/Embench

