Scalable, Configurable Neural Network Accelerator based on RISC-V core

Karthik Wali
Staff Design Engineer
LG Electronics
Introduction

- Neural Network algorithms are increasingly used in many machine learning tasks such as image classification and speech recognition.

- Neuromorphic Accelerator is a class of accelerators which are highly optimized for executing Neural Networks in general and Convolution Neural Networks (CNN) in particular.

- One such CNN accelerator is LG Neural Engine (LNE).
LG Neural Engine

#RISCVSUMMIT | tmt.knect365.com/risc-v-summit/
LNE’s Features

- Scalable and flexible implementation to meet requirements from IoT to high-end applications
- Supporting both inference and on-device learning for edge devices
- Customized ISA extension to RISC-V to support neural network functions
- Supported and verified over different neural networks such as
 - Image classification: GoogLeNet, MobileNet, ResNet-50, VGG-16, SqueezeNet, etc
 - Object detection: Tiny-Yolo, SacNet, SacNet-yolo-tiny, etc
 - Image segmentation: SegNet, ErfNet, etc
- Developed with area and energy-efficient implementation
- High speed design with target frequency of 1.0+ GHz
- Industry standard AXI bus interfaces for easy SoC integration
- Internal computations use either 8-bit or 16-bit fixed-point data format
- Support binarized weight for higher FPS and lower memory BW
- Customized, instruction-accurate SPIKE simulator
- Silicon proven architecture by TSMC 28nm HPC+

#RISCVSUMMIT | tmt.knect365.com/risc-v-summit/
LNE’s Architecture

- LNE can be scaled up to 128 cores (theoretically no limitation but physically)
- Each Tilelet contains one RISC-V and NPU w/ Memory BLOBs (MBLOBs)
- Each Tilelet can operate independently, simultaneously and synchronized if needed
- Tilelets share a common, asynchronous Data Movement Engine (DME)
- Tilelets share a Common Instruction Cache (CIC)
- Tilelets transfer data through Inner and Outer Ring Bus
- Tile Shared Memory (TSM) can serve as on-chip memory to lower DDR accesses, so power consumption
- Access to internal register space through AXI4L Slave
- Access to external (on-chip shared or DDR) memory is through the AXI4 Master
RISC-V

- Why RISC-V?
 - Free open source architecture
 - Ability to add custom instruction set
 - Easy migration to ASIC
 - SPIKE & RISC-V Toolchain
 - Parameter Computations
 - Support functionality not in NPU

- RISC-V Features
 - RV32IMC optional M and C extensions
 - 4-stage pipeline
 - High Speed Design
 - Configurable Multiplier
 - High Frequency (latency up to 32 cycles)
 - Low Frequency (latency 4 cycles)
 - Hardware Divider (latency 16 cycles)
 - Co Processor Interface
 - RISC-V cores support from IoT to high end devices

#RISCVSUMMIT | tmt.knect365.com/risc-v-summit/
Neural Processing Unit (NPU)

- NPU accelerates all the neuro-morphic related operations with RISC-V extended ISA
- NPU supported functions
 - Activation - ReLU, pReLU, ReLU6, Sigmoid, TANH
 - Pool - Average, Max, Index, Variable stride
 - Percept
 - Vector operations - normalization, element-wise addition and multiplication
 - Convolution - 2D/3D with variable stride, dilation, bias per kernel and activate and binarized weights
- NPU interfaces with MBLOBs and TSM
- Configurable Pipeline Stages
- NPU has
 - 8 lanes of 16x16 MACs, or
 - 16 lanes of 8x8 MACs
- Total MACs in LNE
 - 8 Tiles x 16 Tilelets/Tile x 16 MACs/Tilelet = 2,048 MACs
Common iCache/Data Memory

- Common iCache
 - 4KB/8KB options with 4-way set associativity
 - 256B cacheline
 - 4 Banks, address partitioned
 - Support for 16 requestors

- Per core iCache and Instruction Memory available as options to replace Common iCache.

- Data Memory
 - Localized memory to each RISC-V core
 - 2KB/4KB/8KB options
 - DDR accessible
MBLOBs and TSM

- Memory BLOBs (MBLOBs)
 - MBLOBs – each as source for data, weights or destination for results
 - Extra MBLOB option is available for extended usages
 - 2KB/4KB/8KB options are available per MBLOB.

- Tile Shared Memory (TSM)
 - On chip memory for lower memory BW
 - Data movement between TSM and DDR
 - Data movement between TSM and MBLOBs
 - Data movement from TSM to NPU the data is directly from TSM, not from MBLOB
 - 64KB/128KB/256KB/512KB options
Data Movement Engine (DME)

- Operations are asynchronous to RISC-V and are enabled with DATAMV instructions from RISC-V
- Data packets can be stored or loaded with 2D/3D memory layout
- Support for data transfer from/to Tilelets with broadcast-multicast feature
- Support for data transfer from/to TSM
- Support for data transfer from/to DMEM
Host Access

- HOST can communicate with each Tile (and Tilelet) through AXI
- HOST can access Registers in Tile or the custom registers in RISC-V (not GPR of RISC-V)
- HOST can access DMEM and MBLOBs
- HOST can activate each Tilelet individually or altogether
Ring Bus

- Data can transfer across the Tiles and Tilelets
- Instruction enabled asynchronous packet based multi-hop ring bus data transfers
- Stream Transfer Port (STP) transfers the data packets between Tilelets through Inner Ring Bus
- Junction (JCT) routes the data packets between Tiles through Outer Ring Bus
LG's AI SoC

Sensor Input & System I/O
- Camera Processing
- LG Neural Engine
- Wi-Fi
- CPU
- Security
- Voice
- Vision

On-Device neural network acceleration and learning
- Scalability, Flexibility
- On-Device Learning
- LG Neural engine

Sensor processing of Vision, Hearing and Touch
- Low light enhancement with camera pre processing

Efficiency & Privacy
- Low Power Vision Intelligence and Secure A.I.
- Human recognition and tracking
- Meta Data

#RISCVSUMMIT | tmt.knect365.com/risc-v-summit/
LNE's Software Flow

- LNE software framework supports trained models in Caffe, TensorFlow and PyTorch
- LNE SDK converts and maps the model and trained weights on Tiles and Tilelets
- Trained model is compiled with RISC-V GCC and ported on LNE
Demo

Finding Target
THANK YOU