SHAKTI Processor Project

Arjun Menon

Senior Project Officer
RISE Group | IIT Madras
Processor IPs

- E-class 3-stage
- C-class 5-stage
- I-class* 12-stage

Bluespec System Verilog (BSV)

* Work in progress
E-Class

Features:
- 3-stage in-order
- ISA: RV[32/64] I [ACM]
- Can boot FreeRTOS, Zephyr

<table>
<thead>
<tr>
<th></th>
<th>Artix-7 FPGA</th>
<th>180nm ASIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Config</td>
<td>RV32IACM</td>
<td>RV64IACM</td>
</tr>
<tr>
<td>LUTs</td>
<td>2.5K</td>
<td>3K</td>
</tr>
<tr>
<td>Clock freq.</td>
<td>100 MHz</td>
<td>100 MHz</td>
</tr>
</tbody>
</table>

Src: https://gitlab.com/shaktiproject/cores/e-class
Processor IPs

Features:
- 5-stage in-order
- ISA: RV[32/64] I [ACFDMNSU]
- Branch predictor + RAS
- Daisy-chained CSRs
- 1.72 DMIPS/MHz
- Can boot Linux kernel

C-Class

Prototypes
- 180nm
- 22nm (LP)

Src: https://gitlab.com/shaktiproject/cores/c-class

<table>
<thead>
<tr>
<th>Artix-7 FPGA</th>
<th>65nm ASIC (LP)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>LUTs</td>
<td>Instances</td>
</tr>
<tr>
<td>RV32IACMNSU</td>
<td>RV32IACMNSU</td>
</tr>
<tr>
<td>4.5K</td>
<td>40.2K</td>
</tr>
<tr>
<td>RV64IACMNSU</td>
<td>RV64IACMNSU</td>
</tr>
<tr>
<td>6.5K</td>
<td>80K</td>
</tr>
<tr>
<td>Clock freq.</td>
<td>Clock freq.</td>
</tr>
<tr>
<td>100 MHz</td>
<td>400 MHz</td>
</tr>
<tr>
<td>80 MHz</td>
<td>340 MHz</td>
</tr>
</tbody>
</table>
Core Configuration

ISA
RV[32/64][ACFDM], Supervisor and User support, User-trap support

Branch Predictors
History Size, BHT and BTB Sizes, RAS Size

Caches
Sets, Ways, Banks, Fill buffer size, ECC, TIMs

MMU support
Supervisor mode support, TLB Sizes, ASID width

Misc
PMP Size, Triggers, Debug support, Performance counters

Simulation
Verilator/VCS/Incisive, Coverage and Trace, Multi-threaded
Multicore

- Parameterizable no. of application cores (1-32 cores)
- Directory-based MSI cache coherence
- System management with monitor core
- TileLink-C bus protocol
- NoC with mesh topology

Safety critical applications

- Criticality aware NoC
- Triple Lock-Step (TLS) pipeline for fault tolerance*

* Work in progress

In Collaboration with Thales

SafeRV
Uncore IPs

- **Bus protocols**
 - AXI4/AXI4-Lite
 - TileLink-U/H

- **Bridges to/from AXI4 and AXI4-Lite with different data bus widths and clocks**

- **Posit-arithmetic Units + Compiler**

- **Peripherals**
 - SPI
 - PWM
 - Quad SPI
 - I2C
 - I2C
 - Watchdog
 - DMA
 - UART
 - PLIC

* For select FPGAs
Offerings

Core + Uncore IP
- Various classes of processors
- Bus protocols
- Peripherals
- Fully automated FPGA
- Bitstream generation

Verification
- CoCoTb VIPs: Coroutine Co-simulation Verification IPs*
- AAPG: Automatic Assembly Program Generator
- RiTA: RISC-V Trace Analyzer
- RISCV-Config Legalizer
- RISCOF: Compliance Testing
- RiVer: RISC-V Verification as a plugin infrastructure*

Software
- Integrated Development Environment (IDE)
- Software Development Kit (SDK)
- RISC-V OCaml and Mirage OS*

Research*
- Systolic Array
- Crypto accelerators
- Side-channel attack resistance
- Fat-pointers
- Compartmentalization

* Work in progress
Start using Shakti today!

https://shakti.org.in