OpenHW Group
2020 BHAG
BIG HARRY AUDACIOUS GOAL

CORE-V™ Chassis

- production ready,
- CORE-V CV64A & CV32E cores,
- deep sub-micron SoC,
- on an eval board,
- running Linux / Zephyr
- Tapeout 2H, 2020
- Linux capable 1.5GHz CV64A host CPU and CV32E coprocessor
- X32/x16 (LP)DDR4, DDR3L memory
- 3D / 2D GPUs with OpenGL support
- MIPI-DSI / CSI display / camera controllers
- Security: DRM Ciphers, key storage, random number generator, etc.
- GigE MAC
- PCIe 2.0 x1 port
- 2 USB 2.0 interfaces
- 3 SDIO interfaces for boot source, storage, etc.

![Board Layout Diagram]
• CV64A application 64bit RV64GC processor core IP (Ariane core)
 • Linux Capable
 • Tightly integrated D$ & I$
 • M, S & U privilege modes
 • TLB, SV39
 • Hardware PTW
 • Optimized for performance
 • Frequency: 1.5GHz
 • Area:~175kGE
 • Critical path: ~25 logic levels

• 6-stage pipeline
 • In-order issue
 • Out-of-order write-back
 • In-order commit
• CV32E embedded 32bit RV32IMFCXpulp processor core IP (RI5CY core)
 • 4-stage pipeline
 • 70K GF22 nand2 gate equivalents gate + 30KGE for FPU
 • Coremark/MHz 3.19
• Includes various extensions
 • pSIMD, Fixed point, Bit manipulations, HW loops
• Silicon Proven
 • SMIC130, UMC65, TSMC55LP, TSMC40LP, GF22FDX

• Floating Point Unit
 • Iterative DIV/SQRT (9 cycles)
 • Parametrizable latency for MUL, ADD, SUB, Cast
 • Single cycle load, store
CORE-V™ Chassis - Possible Processor Complex – CV64 + CV32 cluster

© OpenHW Group 10 December 2019
CORE-V™ Chassis - Possible Processor Complex – CV64A + CV64V Vector Core
CORE-V Chassis – Call for Participation

• Join the OpenHW Group to drive the CORE-V Chassis project

 • CV64A and CV32 verification test bench

 • CV64A bus interfaces and cache coherency support

 • CV64A IPC improvements

 • CV64A and CV32E OS porting / development environment

 • ... and more ...