Verifying RISC-V Vector and Bit Manipulation Extensions using STING Design Verification Tool

Shubhodeep Roy Choudhury, Shajid T, Jevin John, George S

Agenda

- Vector and bit manipulation support Where we are?
- Overview of STING
- Verification strategy
- Results/Bugs Found
- Future work

Status of Vector and Bit Manipulation Support

- Vector specification version 0.8-draft-20190906
- Bit manipulation specification version 0.9.2
- Support for all the 650+ vector and 100 bit manipulation instructions added to STING
- Work in progress

Overview of STING

- Highly configurable and flexible bare metal program
- Intelligent and architecturally correct instruction sequences complete with results checking
- Supports constrained random, directed and, graph based test generation methodologies
- Portable stimulus simulations, emulation, FPGA or silicon
- MP and SoC ready

Stimulus Development Framework - Snippets

- Programming framework for RISC-V test development
- High level language constructs mixed with inline assembly
- Allows reservation of registers, memory and hardware threads
- Enables users to install interrupt and exception handlers
- Embedded into the instruction stream after resolving the resource allocation constraints
- Easily integrate existing assembly and C/C++ tests

Rendering of Snippets

en/tests/machine_test

- Rendering is the process of embedding the snippet into instruction stream
- Rendering of test intent along with different stimulus patterns leads to increased cross product coverage

£11	1601 // X26 <- [3101]			
8)	1602 lbu x24, 1053(x26)			
24, (x29)	1603 fence r, io			
30, (x27)	1604 enable_rvc "c.lw x14, 32(x15)"			
x12, 60(x8)"	1605 sb x13, -1648(x29)			
ppet_id: 00000005 SNP_MP_SimpleWait	1606 fcvt.w.d x11, f11, rdn			
	1607 enable_rvc "c.ld x13, 72(x15)"			
_SimpleWait_run_block0_120_5_0	1608 enable_rvc "c.sw x13, 36(x15)"			
run_block0_120_5_0:	1609 amominu.w.aq x5, x5, (x20)			
	<pre>1610 // ++snip start: snippet_id: 01000005 SNP_MP_SimpleWait</pre>			
	1611 addi x23, x23, 16			
impleWait_run_block0_121_5_0	<pre>1612 .global start_SNP_MP_SimpleWait_run_block1_122_5_1</pre>			
n_block0_121_5_0:	1613 start_SNP_MP_SimpleWait_run_block1_122_5_1:			
_SimpleWait_run_block1_122_5_0	1614 li x7, 0x1			
run_block1_122_5_0:	1615 do branch_119_5_1:			
	1616 lw x5, 0(x23)			
	1617 blt x5, x7, do_branch_119_5_1			
	1618 .global end_SNP_MP_SimpleWait_run_block1_123_5_1			
ch_119_5_0	1619 end_SNP_MP_SimpleWait_run_block1_123_5_1:			
impleWait_run_block1_123_5_0	1620 //snip end: SNP_MP_SimpleWait			
n_block1_123_5_0:	1621 amoor.d x6, x12, (x22)			
P_SimpleWait	1622 1d x11, -2000(x22)			
8)	1623 enable_rvc "c.lw x14, 24(x15)"			
7)	1624 amoadd.w.aq x14, x24, (x29)			
.s [+] 1752,5 7%	<pre>build/gen/tests/machine_test_l.s [+]</pre>			

Verification Strategy

- Test plan based verification
- Pattern based tests Fixed and Random
- Constrained random and graph based test generation
- Snippets for directed scenarios
- Cross product with PMP, virtual memory, privilege mode of execution etc.

Fixed Pattern Directed Tests

- Define data sets of fixed input and output patterns for every instruction
- Cover the corner case and interesting values
- Useful for basic testing of ISA implementation

1		1
3		3 # VALTRIX TECHNOLOGIES PVT. LTD. CONFIDENTIAL 4 #
4 5 6 7 8 9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	<pre># VALTRIX TECHNOLOGIES PVT. LTD. CONFIDENTIAL # # # [2016] - Valtrix Technologies Private Limite # All Rights Reserved. # # NOTICE: All information contained herein # property of Valtrix Technologies Pvt. Lt1 # and technical concepts contained herein # Valtrix Technologies Pvt. Ltd. and may be # U.S. and Foreign Patents, patents in process # by trade secret or copyright law. Diss # information or reproduction of this mat # forbidden unless prior written permissic # Valtrix Technologies Pvt. Ltd. # # The dictionary given below defines the data# # SRC_1 contains the data to be loaded into tr # field defined in the dictionary. The expects</pre>	<pre>2 4 3 # VALTRIX TECHNOLOGIES PVT. LTD. CONFIDENTIAL 4 #</pre>
28 29	ISA CLZ CONF = I	33 { SRC_1 : 0x00000000UL EXPECTED_RESULT : 0x00000020 }, 34 { SRC_1 : 0x0100000UL EXPECTED_RESULT : 0x00000007 }, 35 { SRC_1 : 0x0010000UL EXPECTED_RESULT : 0x0000000B }, 46 { SRC 1 : 0x0010000UL EXPECTED_RESULT : 0x0000000B },
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	DATA_SET : [{ SRC_1 : 0xFFFFFFFFFFFFFFFFFFUL EXFF { SRC_1 : 0x0000000000000000000000000000000000	0 { SRC_1 : 0x0000001UL EXPECTED_RESULT : 0x0000001F },

Fixed Pattern Directed Tests (contd)

- Once data sets are ready, snippets are developed to program the input patterns and execute the instruction
- Results from the execution checkpointed and compared with the expected output
- Error reported in case a failure is is detected during comparison

21 ; Fixed pattern directed test for RV32B CLZ instruction 23 import "src/snippets/rv/rv param blocks.pb" 26 resource 27 cput x 28 base t rb1[8]@8 29 axreg t rx1, rx2 30 unum t rno = snp urandrange(0, ISA CLZ CONF.NUM DATA SET) 31 32 43 snip rur 33 snip setup 44 34 ; Empty 45 @cpu: x 46 35 47 for index in (0, ISA CLZ CONF.NUM DATA SET): 36 48 construct inst reg(inst = clz, imm = ISA CLZ CONF.DATA SET[index].SRC 1 37 snip init 49 reax = rx150 reav = rx238 51 reab = rb139 @cpu: x 52 write reg to mem (reg 53 40 check mem(val = ISA CLZ CONF.DATA SET[index].EXPECTED RESULT, 41 55 42 56 endfor 57 43 snip run 44 45 @cpu: x construct inst reg(inst = clz, imm = ISA CLZ CONF.DATA SET[rno].SRC 1, 46 47 reax = rx1,48 reav = rx2. 49 regb = rb1)50 51 52 snip check 53 54 @cpu: x 55 check mem (val = ISA CLZ CONF.DATA SET[rno].EXPECTED RESULT, 56

Fixed Pattern Directed Tests (contd)

- In case of vectors, the data sets are tested with different configuration settings, which include
 - Supported SEW values
 - Supported LMUL values
 - Different combinations of VSTART and VL
 - Different combinations of mask register (V0)
 - Different combinations of VLEN, ELEN, SLEN and SELEN

Random Pattern Directed Tests

- Fixed pattern tests not adequate to test all input/source values
- Limitation addressed by random pattern tests, where randomly chosen values are programmed into the source register
- The expected output is simulated and compared with the result obtained from the DUT

· · ·	
	Random pattern directed test for RV32B CLZ instruction
3	
	port "src/snippets/rv/rv_param_blocks.pb"
5	
	source
7 cpi	
	im_t inp
	im_t exp_res
	reg_t rx1, rx2, rx3
	nory_t mem_chkp[8]@8
2	n octum
	p_setup ; Empty
4 5	, millery
	p init
7	"P_THITC
	bu: x
9 ,	
o (inp = snp randnum()
2	la rx2, mem chkp
3	write val to mem(regx = $rx1$, regb = $rx2$, val = 0)
4	
5 sni	.p_run
6	
7 @cp	bu: x
8	
9	li rx1, inp
0	
1	clz rx2, rx1
2	
3	la rx3, mem_chkp
4	<pre>write_reg_to_mem(regx = rx2, regb = rx3, offst = 0)</pre>
5	
	p_check
7	
	u: x
9 7	exp res = snp sim clz(inp)
0	

Random Pattern Directed Tests (contd)

Random Tests with Checking

- Pattern based tests are great spot checks but tend to add lot of noise in random tests
- Random tests for increased coverage and interaction with other elements

SYS1

• Correctness of test execution using cosim checking, multi pass results checking etc.

Random Tests with Checking (contd)

8209 VSD.V V17, (x15) 8210 vssub.vv v19, v17, v16 8211 vsb.v v12, (x8) 8212 vlseg6hff.v v22, (x26) 8213 vsb.v v12, (x16) 8214 vlseg7e.v v7, (x16) TEST – interleaved_vsb_v	68 69 70 71 	vwmul.vv v24, v27, v21 vlhuff.v v10, (x18) vslideup.vi v10, v4, 5 vmulhsu.vx v28, v30, x31 vlseg4eff.v v22, (x28), v0.t vwmul.vv v18, v26, v21	806 807 808 809 810	vlseg4b.v v10, (x8) vlseg4b.v v11, (x22), v0.t vlseg4b.v v6, (x18) vlseg4b.v v8, (x20), v0.t vlseg4b.v v7, (x8) TEST - only_vlseg4b_v
8184 vlseg6bu.v v25, (x28), v0.t 8185 vsb.v v11, (x20) 8186 lwu x31, -1592(x15) 8187 vsb.v v8, (x18) 8188 vlseg3b.v v20, (x28), x29, v0.t 8189 vsb.v v30, (x28), v0.t 8190 vlseg2hff.v v24, (x15) 8191 vsb.v v8, (x20) 8192 enable_rvc "c.sw x10, 36(x8)" 8193 vsb.v v9, (x18), v0.t 8194 vlsseg6wu.v v22, (x28),x29, v0.t 8195 vsb.v v25, (x15) 8196 vlseg4hu.v v17, (x26) 8197 vsb.v v30, (x28), v0.t 8198 flw f19, -1936(x28) 8199 vsb.v v30, (x28), v0.t 8200 vfsgnj.vf v14, v11, f1 8201 vsb.v v29, (x27), v0.t 8202 fsd f15, -1992(x26) 8203 vsb.v v9, (x16), v0.t 8204 amoxor.w.rl x24, x24, (x26) 8205 vsb.v v16, (x15) 8206 vfnmsub.vv v17, v16, v16 8207 vsb.v v4, (x22), v0.t 8208 vlxwu.v v6, (x20),v2, v0.t 8209 <t< td=""><td>2444 45 46 47 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 66 67</td><td><pre>srlw x7, x6, x7 vwsubu.vx v24, v30, x14 vlb.v v20, (x27), v0.t sb x25, -1607(x28) vwmul.vv v16, v30, v31 vlseg3b.v v10, (x20) vwmul.vv v28, v19, v17 vssseg4w.v v19, (x27), x29, v0.t fdiv.s f17, f22, f13, rdn enable_rvc "c.fld f12, 88(x15)" fclass.d x12, f5 enable_rvc "c.sd x11, 104(x8)" vamoxore.v v17, v3, (x27), v17 vlseg5bu.v v4, (x8) sw x31, 1792(x26) vwmul.vv v30, v27, v21 vlseg2hu.v v7, (x16), v0.t enable_rvc "c.lw x14, 24(x15)" vsb.v v13, (x18) vwmul.vv v14, v4, v12 vmmul.vv v14, v12, v10 srliw x11, x10, 22 vmmul.vv v28, v21, v18 vmmaccsu.vv v10, v7, v5</pre></td><td>791 792 793 794 795 796 797 798 799 800 801 802 803 804 805</td><td><pre>vlseg4b.v v10, (x16) , v0.t vlseg4b.v v4, (x22) vlseg4b.v v25, (x28) , v0.t vlseg4b.v v10, (x22) vlseg4b.v v10, (x22) vlseg4b.v v5, (x16) vlseg4b.v v5, (x16) vlseg4b.v v4, (x22) , v0.t vlseg4b.v v4, (x22) , v0.t vlseg4b.v v4, (x20) vlseg4b.v v17, (x28) , v0.t vlseg4b.v v20, (x26) vlseg4b.v v27, (x28) , v0.t vlseg4b.v v22, (x26) vlseg4b.v v16, (x26) vlseg4b.v v28, (x28) , v0.t</pre></td></t<>	2444 45 46 47 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 66 67	<pre>srlw x7, x6, x7 vwsubu.vx v24, v30, x14 vlb.v v20, (x27), v0.t sb x25, -1607(x28) vwmul.vv v16, v30, v31 vlseg3b.v v10, (x20) vwmul.vv v28, v19, v17 vssseg4w.v v19, (x27), x29, v0.t fdiv.s f17, f22, f13, rdn enable_rvc "c.fld f12, 88(x15)" fclass.d x12, f5 enable_rvc "c.sd x11, 104(x8)" vamoxore.v v17, v3, (x27), v17 vlseg5bu.v v4, (x8) sw x31, 1792(x26) vwmul.vv v30, v27, v21 vlseg2hu.v v7, (x16), v0.t enable_rvc "c.lw x14, 24(x15)" vsb.v v13, (x18) vwmul.vv v14, v4, v12 vmmul.vv v14, v12, v10 srliw x11, x10, 22 vmmul.vv v28, v21, v18 vmmaccsu.vv v10, v7, v5</pre>	791 792 793 794 795 796 797 798 799 800 801 802 803 804 805	<pre>vlseg4b.v v10, (x16) , v0.t vlseg4b.v v4, (x22) vlseg4b.v v25, (x28) , v0.t vlseg4b.v v10, (x22) vlseg4b.v v10, (x22) vlseg4b.v v5, (x16) vlseg4b.v v5, (x16) vlseg4b.v v4, (x22) , v0.t vlseg4b.v v4, (x22) , v0.t vlseg4b.v v4, (x20) vlseg4b.v v17, (x28) , v0.t vlseg4b.v v20, (x26) vlseg4b.v v27, (x28) , v0.t vlseg4b.v v22, (x26) vlseg4b.v v16, (x26) vlseg4b.v v28, (x28) , v0.t</pre>

TEST – more_vwmul_vv

Miscellaneous Tests

- Snippets developed for a large number of directed scenarios to check compliance with the specification
 - Vector register overlap for widening/narrowing instructions and LMUL > 1
 - Verifying if current SEW or LMUL is legal for the executing instruction
- Cross products with existing configurations for PMA, PMP, virtual memory, privileged mode of execution
- Configurations to generate different biased random sequences involving vector and bit manipulation instructions

Results/Bugs Found

- Register overlap check failure for LMUL > 1
- Unexpected load/store address misaligned exceptions on randomizing SEW
- Incorrect decodes of several vector and bit-manipulation instructions
- No trap exception on executing vector atomics with unsupported SEW setting
- Unexpected VL setting at the end of vector fault-only-first load instructions
- Violation of rules in setting VL due to randomization of SEW and AVL
- Incorrect results with vector arithmetic operations
- Irregularities in sign extension of result of vector atomic operations
- Unexpected output of saturating arithmetic instructions on randomization of vector rounding mode (VXRM)
- VXRM/VXSAT not part of FCSR

Future Work

- Add support for the changes introduced by newer revisions of specification
- Improved LMUL randomization
- Handle different random combinations of striping length (SLEN)
- Enhance STING coverage manager for vector and bit manipulation instructions
- Tests for Vector EDIV extension

