
Verifying RISC-V Vector and Bit Manipulation 
Extensions using STING Design Verification Tool

Shubhodeep Roy Choudhury, Shajid T, Jevin John, George S



Agenda

● Vector and bit manipulation support – Where we are?

● Overview of STING

● Verification strategy

● Results/Bugs Found

● Future work



Status of Vector and Bit Manipulation Support

● Vector specification version 0.8-draft-20190906

● Bit manipulation specification version 0.9.2

● Support for all the 650+ vector and 100 bit manipulation instructions added to 
STING

● Work in progress



Overview of STING

● Highly configurable and flexible bare metal 
program

● Intelligent and architecturally correct 
instruction sequences complete with results 
checking

● Supports constrained random, directed and, 
graph based test generation methodologies

● Portable stimulus – simulations, emulation, 
FPGA or silicon

● MP and SoC ready

User
Input

Test Scheduler

Peripheral Device 
Drivers

Micro Kernel

Configuration 
Parsers

Meta-data 
Generator

Test Creator

ASM-based 
Directed Tests C++-based Tests

Test Configurations

DEVICE UNDER TEST (DUT)

Generator

Library & 
Kernel



Stimulus Development Framework - Snippets

● Programming framework for RISC-V test development

● High level language constructs mixed with inline assembly

● Allows reservation of registers, memory and hardware threads

● Enables users to install interrupt and exception handlers

● Embedded into the instruction stream after resolving the resource allocation 
constraints

● Easily integrate existing assembly and C/C++ tests



Rendering of Snippets

● Rendering is the process of embedding the snippet into 
instruction stream

● Rendering of test intent along with different stimulus 
patterns leads to increased cross product coverage



Verification Strategy

● Test plan based verification

● Pattern based tests – Fixed and Random

● Constrained random and graph based test generation

● Snippets for directed scenarios

● Cross product with PMP, virtual memory, privilege mode of execution etc.



Fixed Pattern Directed Tests

● Define data sets of fixed input
and output patterns for every
instruction

● Cover the corner case and
interesting values

● Useful for basic testing of ISA
implementation



Fixed Pattern Directed Tests (contd)

● Once data sets are ready, snippets
are developed to program the
input patterns and execute the
instruction

● Results from the execution check-
pointed and compared with the
expected output

● Error reported in case a failure is
is detected during comparison



Fixed Pattern Directed Tests (contd)

● In case of vectors, the data sets are tested with different configuration settings, 
which include

- Supported SEW values

- Supported LMUL values

- Different combinations of VSTART and VL

- Different combinations of mask register (V0)

- Different combinations of VLEN, ELEN, SLEN and SELEN



Random Pattern Directed Tests

● Fixed pattern tests not adequate to test all 
input/source values

● Limitation addressed by random pattern 
tests, where randomly chosen values are 
programmed into the source register

● The expected output is simulated and 
compared with the result obtained from the 
DUT



Random Pattern Directed Tests (contd)

1. Generation of random input
2. Instruction execution
3. Checkpointing of output

Simulated result

Comparison with DUT output
checkpointed at an earlier point



Random Tests with Checking

● Pattern based tests are great spot 
checks but tend to add lot of noise 
in random tests

● Random tests for increased 
coverage and interaction with 
other elements

● Correctness of test execution using 
cosim checking, multi pass results 
checking etc.

SPIKE

1 Build STING
image

STING
Random

Test

STING
ELF

Run on simulator

riscvOVPsim/
SPIKE

Reference
Test Results

Collect reference
test results
from running
on simulator

STING
Random

Test

Reference
Test Results

Parse the reference
results into a CPP data
structure

Rebuild the same
test with reference
test results and
COSIM checking
enabled

STING
ELF*

SPIKEDUT

Run on DUT with COSIM checking enabled

2

3

4

5
6



Random Tests with Checking (contd)

TEST – interleaved_vsb_v

TEST – more_vwmul_vv

TEST – only_vlseg4b_v



Miscellaneous Tests

● Snippets developed for a large number of directed scenarios to check 
compliance with the specification

- Vector register overlap for widening/narrowing instructions and LMUL > 1
- Verifying if current SEW or LMUL is legal for the executing instruction

● Cross products with existing configurations for PMA, PMP, virtual memory, 
privileged mode of execution

● Configurations to generate different biased random sequences involving 
vector and bit manipulation instructions



Results/Bugs Found

● Register overlap check failure for LMUL > 1

● Unexpected load/store address misaligned exceptions on randomizing SEW

● Incorrect decodes of several vector and bit-manipulation instructions

● No trap exception on executing vector atomics with unsupported SEW setting

● Unexpected VL setting at the end of vector fault-only-first load instructions

● Violation of rules in setting VL due to randomization of SEW and AVL

● Incorrect results with vector arithmetic operations

● Irregularities in sign extension of result of vector atomic operations

● Unexpected output of saturating arithmetic instructions on randomization of vector 
rounding mode (VXRM)

● VXRM/VXSAT not part of FCSR



Future Work

● Add support for the changes introduced by newer revisions of specification

● Improved LMUL randomization

● Handle different random combinations of striping length (SLEN)

● Enhance STING coverage manager for vector and bit manipulation instructions

● Tests for Vector EDIV extension


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

